形成 o 热带地区 o 海洋温度 80 华氏度 o 在非洲上空发展,向西吹,那里的海水很温暖 o 它开始冷却,形成铁砧状云 o 风开始以圆圈形式吹 o 旋转风速达到每小时 74 英里,成为气旋 3
摘要。本文介绍了用于图像识别的深度卷积神经网络训练的性能-能量权衡研究。使用配备 Nvidia Quadro RTX 6000 和 Nvidia V100 GPU 的系统测试了几种具有代表性且广泛采用的网络模型,例如 Alexnet、VGG-19、Inception V3、Inception V4、Resnet50 和 Resnet152。使用 GPU 功率上限,我们发现除了默认配置之外,还可以最小化三个不同的指标:能量 (E)、能量延迟积 (EDP) 以及能量延迟总和 (EDS),从而节省大量能源,EDP 和 EDS 的性能损失较低到中等。具体来说,对于 Quadro 6000 和最小化 E,我们获得了 28.5%–32.5% 的节能效果;对于 EDP,我们获得了 25%–28% 的节能效果,平均性能损失为 4.5%–15.4%;对于 EDS (k=2),我们获得了 22%–27% 的节能效果,平均性能损失为 4.5%–13.8%。对于 V100,我们发现平均节能效果为 24%–33%;对于 EDP,我们获得了 23%–27% 的节能效果,平均性能损失为 13%–21%;对于 EDS (k=2),我们获得了 23.5%–27.3% 的节能效果,平均性能损失为 4.5%–13.8%。
工作论文 2024 年 12 月 关于作者 Eleonora L. Cammarano 是约翰霍普金斯大学 SAIS 2025 年国际事务文学硕士 (MAIA) 候选人。她于 2023 年以优异成绩毕业于约翰卡伯特大学,完成环境和平建设顶点项目,主修国际事务,辅修哲学和经济学。Eleonora 的主要兴趣在于气候变化与安全的交叉点、有效的和平干预以及全球南方视角。Branson Gillispie 是约翰霍普金斯大学高级国际研究学院 (SAIS) 国际关系文学硕士 (MAIR) 二年级学生,拥有肯塔基州列克星敦特兰西瓦尼亚大学的国际事务和写作修辞与传播文学学士学位。他的研究兴趣涉及欧洲和欧亚大陆的冲突解决、民族主义、身份、移民和社会之间的交叉点。Manan Shah 是 FOGGS 的研究、IT 和通信顾问。他毕业于印度马尼帕尔理工学院,获得计算机科学与工程学士学位,辅修大数据。他的兴趣领域包括社会学、国际关系、气候变化和经济学。 FOGGS 论文系列编辑:Georgios Kostakos 研究助理:Antoine Brimbal 格式和出版:Manan Shah 免责声明 本出版物由 FOGGS 发行,仍归基金会所有。在注明出处的情况下,可以非商业目的复制。本出版物的内容由作者负责,不应被解释为一定反映 FOGGS 执行委员会或 FOGGS 合作伙伴或赞助商的观点。
摘要 通过聚合酶链式反应,可以从基因组 DNA 中酶促扩增单拷贝序列。通过使用两种不同摩尔量的扩增引物,只需一个步骤即可扩增单拷贝基因并产生所选链的过量单链 DNA,用于直接测序或用作杂交探针。此外,可以使用等位基因特异性寡核苷酸在扩增反应中或作为测序引物直接测序杂合子中的单个等位基因。通过使用这些方法,我们研究了 HLA-DQA 基因座的等位基因多样性及其与血清学定义的 HLA-DR 和 -DQ 类型的关联。该分析揭示了总共八个等位基因和三个额外的单倍型。该方法在筛查人类基因突变方面具有广泛的应用,并有助于将基因的酶促扩增与自动测序联系起来。
该计划将资助商业和非商业伙伴之间的伙伴关系,该伙伴关系以创新商业案例为基础,对发展中国家产生影响,并与丹麦在伙伴国家的战略重点保持一致。每个伙伴关系都应促进绿色转型和包容性增长。伙伴关系的成功取决于商业和非商业伙伴。良好的伙伴关系需要对商业和发展目标有共同的理解。通过利用私营部门的资金和能力,结合对非商业伙伴发展挑战的了解,该计划旨在为联合国的可持续发展目标做出贡献,特别是那些应对气候变化、环境和生物多样性退化以及包容性增长的目标。
类风湿关节炎(RA)是一种自身免疫性疾病,导致进行性关节损害。早期诊断和治疗至关重要,但由于RA的复杂性和异质性,仍然具有挑战性。机器学习(ML)技术可以通过识别多维生物医学数据中的模式来增强RA管理,以改善分类,诊断和治疗预测。在这篇评论中,我们总结了ML在RA管理中的应用。新兴研究或应用为RA开发了诊断和预测模型,这些模型利用了各种数据模式,包括电子健康记录,成像和多摩学数据。高性能监督的学习模型已证明曲线下的一个面积超过0.85,用于识别RA患者并预测治疗反应。无监督的学习揭示了潜在的RA亚型。正在进行的研究是将多模式数据与深度学习相结合,以进一步提高性能。然而,关于模型过度拟合,可推广性,临床环境中的验证和可解释性的关键挑战。少量样本量和缺乏多样化的人口测试风险高估了模型性能。缺乏评估现实世界临床实用程序的前瞻性研究。增强模型可解释性对于临床医生接受至关重要。总而言之,尽管ML表现出通过早期诊断和优化治疗,更大规模的多站点数据,可解释模型的前瞻性临床验证以及对不同人群进行测试的前瞻性临床验证的有望。由于解决了这些差距,ML可能会为RA中的精密医学铺平道路。
组织会保留数据多长时间?您在本表格中提供的信息将在申请审核过程中被考虑。对于那些被课程或计划录取的人,这些信息将在课程或计划的实施过程中以及后续期间使用。课程结束后,我们只会将您的姓名和联系方式保留一年 - 删除剩余信息。如果您未被课程录取,我们将立即删除您的个人数据。
光传感器要有效地工作,它们必须是应用程序的正确类型,以便保持对测量属性的敏感性。•光传感器是许多常见设备的组成部分,包括计算机,复制
本文件可能包含前瞻性陈述。前瞻性陈述不是历史事实,可以用诸如“计划”、“目标”、“目的”、“相信”、“预期”、“预期”、“打算”、“估计”、“将”、“可能”、“应该”等词语和类似表达来识别。前瞻性陈述包括关于目标、战略、展望和增长前景的陈述;未来计划、事件或业绩以及未来增长潜力;经济前景和行业趋势;BenevolentAI 市场的发展;监管举措的影响;和/或 BenevolentAI 竞争对手的实力。这些前瞻性陈述反映了 BenevolentAI 当时的信念、意图和当前目标/目的。前瞻性陈述涉及风险和不确定性,因为它们与事件有关,并且取决于未来可能发生或可能不会发生的情况。本新闻稿中的前瞻性陈述基于各种假设,这些假设基于管理层对历史运营趋势、BenevolentAI 记录中包含的数据以及第三方数据的审查(但不限于此)。尽管 BenevolentAI 认为这些假设在做出时是合理的,但这些假设本质上受重大已知和未知风险、不确定性、意外事件和其他重要因素的影响,这些因素难以或无法预测,并且超出了 BenevolentAI 的控制范围。
拟议的专家意见旨在解决糖尿病周围神经病(DPN)的概念,临床和治疗方面的当前知识,并提供指导文件,以帮助临床医生在DPN护理中提供最佳实践。参与的专家认为临床医生对这种疾病的怀疑是早期识别和诊断的关键因素,强调了第一次入选或推荐医生对疾病的意识提高。提出的“筛查和诊断”算法涉及在患有神经性症状和/或神经病的迹象的患者中考虑DPN,并在dpn危险中谨慎地考虑远距离的Neuropthe neuropthe neuropth periper neurop,并排除其他详细的神经疗法,以排除AIRIPATH的NEUROP,并排除其他导致A的神经性症状和/或迹象。在非典型情况下对小神经功能障碍或大型神经功能障碍的结果测试。尽管目前,DPN的第一线干预措施由优化的血糖控制(主要用于1型糖尿病)和多因素干预措施(主要针对2型糖尿病)表示,但需要个性化的DPN发病机理治疗方法。alpha-脂肪酸(ALA)似乎是一条重要的第一线发病机理,因为它是一种直接和间接的抗氧化剂,可与直接针对活性氧的策略一起使用,并非上定义地支持内源性抗氧化剂的能力,以改善DPN条件。该专家意见文件有望增加在该领域的现有研究中仍然存在差距,需要具有敏感终点和标准化方案的精心设计,健壮,多中心临床试验,以通过简单有效的算法促进DPN的诊断,并跟踪疾病的进展和治疗反应。识别生物标志物/预测因子,从潜在的疾病调整角度可以允许个性化方法,这可能会为新型治疗的新疗法提供机会,这些疗法在DPN的早期阶段会有效,并且可能会改变这种疾病的自然病程。识别生物标志物/预测因子,从潜在的疾病调整角度可以允许个性化方法,这可能会为新型治疗的新疗法提供机会,这些疗法在DPN的早期阶段会有效,并且可能会改变这种疾病的自然病程。