生成的AI应用程序,在本课程中,我们将了解生成的AI应用程序以及它们如何改变行业。从具有AI驱动的聊天机器人的文本生成到使用深度学习的图像创建,我们将探索现实世界用例。您将发现AI如何生成视频,音乐,代码和个性化内容。了解聊天机器人,创意AI工具和AI驱动的业务解决方案。我们将介绍这些应用程序背后的关键模型,包括gans,llms和扩散模型。无论您是对AI驱动的营销,自动化还是软件开发感兴趣,本课程都提供了动手见解,以了解生成AI如何塑造未来。360Digitmg
taxabind通过结合多种模型来执行物种分类来解决对生态问题的更强大和统一方法的需求(这是什么样的熊?),分配映射(在哪里?),以及与生态学有关的其他任务。该工具也可以用作与生态建模有关的大型研究的起点,科学家可能用来预测动植物种群的转变,气候变化的影响或人类活动对生态系统的影响。
科学家使用了锌空气电池,其中还原氧气产生了H 2 O 2。“锌是一种丰富且历史悠久的元素……在印度非常便宜和丰富,”跨学科能源研究中心(ICER),固态和结构化学单元(SSCU)的教授Aninda J Bhattacharyya说。
深度学习(DL)是人工智能的子场(AI),涉及算法和模型的开发,这些算法和模型模拟了人类思想的解决问题能力。复杂的AI技术近年来在兽医领域引起了极大的关注。本综述提供了专门用于利用DL用于兽医诊断目的的研究的全面概述。我们的系统审查方法遵循PRISMA指南,重点关注DL和兽医医学的交集,并确定了422篇相关研究文章。在出口标题和摘要以进行筛选之后,我们将选择范围缩小到39个主要研究文章,直接将DL应用于动物疾病检测或管理中,不包括非主要研究,评论和无关的AI研究。目前研究的主要发现突出了2013年至2024年在各个诊断区域中DL模型的利用的增加,包括X射线照相术(占研究的33%),细胞学(33%),健康记录分析(8%),MRI(8%),环境数据分析(5%),照片/视频图像/视频图像(5%)和Ulteras(5%),5%(5%)。在过去的十年中,射线照相成像已成为最有影响力的。与专业兽医基准相比,使用DL模型对原发性胸腔病变和心脏疾病的原发性胸腔病变和心脏疾病的分类取得了显着成功。此外,该技术已被证明擅长于识别,计数和分类显微镜幻灯片图像中的细胞类型,从而在不同的兽医诊断方式上证明了其多功能性。深度学习在兽医诊断方面表现出希望,但仍有一些挑战。这些挑战的范围包括对大型和多样化的数据集的需求,可解释性问题的潜力以及在整个模型开发中与专家进行咨询以确保有效性的重要性。对这些考虑和实施DL在兽医医学中的设计和实施的全面理解对于推动该领域的未来研究和发展工作至关重要。此外,讨论了DL对兽医诊断的潜在影响,以探索兽医医学中DL应用进一步完善和扩展的途径,最终导致了增加的护理标准,并改善了动物的健康状况,随着这项技术的不断发展。
表1。au膜计量学。使用界面分布函数(IDF)方法与金沉积时间计算的金层厚度,平均表面晶粒直径和表面覆盖率的演变。使用IDF方法在模拟表面上估算了粒间距离,该表面由具有受控的表面覆盖范围和直径的纳米虫制成。
摘要 - 本文提出了具有控制和外源输入的非线性动力学(SINDY)的稀疏识别,以高度准确,可靠的预测,并将所提出的方法应用于柴油发动机Airpath系统,这些方法被称为非线性复杂工业系统。尽管Sindy被称为识别非线性系统的强大方法,但仍然存在一些问题:由于嘈杂的数据和由于时间段嵌入等协调的扩展而导致的基础功能增加,因此无法保证在工业系统中应用和多步预测的示例。为了解决这些问题,我们提出了基于整体学习,精英收集和分类技术的改进的信明,同时保持凸计算。在拟议的方法中,进行了图书馆的行李,并且收集了R平方的精英大于90%。然后,在幸存的精英上执行聚类,因为并非总是可用的,并且获得的精英模型并不总是显示出相同的趋势。分类后,通过取出每个分类精英的平均值获得离散模型候选者。最后,选择了最佳模型。仿真结果表明,所提出的方法实现了气相系统的多步骤预测,该系统在嘈杂条件下被称为复杂的工业系统。
非侵入性脑部计算机界面(BCIS)是一种令人兴奋的技术,它为大脑与计算机之间的通信提供了通道。bcis可用于交流(Brumberg等,2018; Chaudhary等,2016),康复(Cervera等,2018),娱乐设备(Gürkök等,2017),以及其他应用程序(Finke等,2009; Makeig et e e e ectig et al。,2011)。在本研究主题的第一卷(Daly等,2021)中,我们发布了包括通过多种模式和BCI范式记录的信号的数据集,包括新型事件相关电位(ERP)(ERP)和基于稳态的视觉诱发电位(SSVEP)基于BCIS的bcis,Motor bcis,Motory bcis,BCIS,BCIS,BCIS,a bciiss a a,a bcis,a bciS a效率,效果,尼古丁成瘾的BCIS以及静止状态数据。但是,BCI的研究正在不断发展,对新的公开数据集的需求越来越不断发展。的确,BCI技术的持续发展取决于许多不同的研究领域的进步,这些研究领域可以单独和集体地改善BCI系统的各个方面,包括信号获取,处理,分类,分类和用户界面设计。尽管如此,只有少数高质量的公共可用数据集可以在这些数据集上开发,评估和比较新的系统,工具和技术。此外,这些数据集的大小和数量相对较小,将过度拟合的风险引入了使用这些数据集开发和评估的方法。为了继续应对这一挑战,该研究主题提供了第二个出版物和相应数据集的集合。换句话说,BCI研究的可靠性和可重复性可能会因缺乏和稀疏性数据集而阻止。他们报告了在世界各地BCI研究实验室的开发,培训和评估过程中记录的生理数据集。用脑电图(EEG)和附近的红外光谱(FNIRS)收集数据。刺激范围内的刺激表现涵盖了不同的感觉方式。Botrel等人的文章。描述了一项关于神经反馈范式中关于α下调和
摘要。这项工作旨在合成和表征橙皮(OP)易于回收的磁复合材料(Orange Peel复合[OPC]),并将其用作e efff fromedscorembent,以从批处理模式下从水性溶液中清除工业药物(diclofenac(dfc))。OP和OPC通过各种技术进行表征,包括傅立叶变换红外,扫描电流显微镜与能量分散光谱,X射线di ff raction,Brunauer-Emmett – Emmett – Emmett – Emmett – Emmett – Emmett-thermogravimetric分析表明,OPC具有有趣的物理学物质性质,可与许多其他许多其他相比。发现OPC的DFC去除是时间依赖性的,并且在90分钟后获得平衡状态。此外,在30°C的温度下,该磁性材料的DFC吸附能力估计为37.0 mg·g -1,高于各种吸附剂。此外,热力学研究结果表明,DFC的去除是可行的,放射的和自发的过程。所有这些结果证明,在广泛的实验条件下,可以将磁化的OP废物视为从水溶液中除去DFC的有前途的材料。
这就是特征优化如此至关重要的原因。添加的外围设备与设备的模具和成本的大小直接相关。未利用的功能可能浪费了空间和金钱,并降低了空间约束设计的效率。了解市场的真实需求可能会导致成本和尺寸竞争力的嵌入式解决方案。例如,MSPM0C1104 8球WCSP不仅很小,而且具有许多集成的功能和组件。在1.38毫米2个软件包中,它提供了16kb的闪存,一个带有三个通道和三个计时器的12位ADC。工程师可以使用MSPM0C1104等设备来优化每平方毫米的功能数量,从而可以在设计方面做更多的空间。