征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
摘要。过去气候的定量重建是19评估气候模型如何重现气候变化的重要资源。一种广泛使用的统计20方法,用于从化石生物组合进行此类重建的方法加权21平均部分最小二乘回归(WA-PLS)。然而,已知的22个WA-PLS产生重建的趋势是压缩到用于校准的气候范围的中心的重建,可能会偏向重建的过去气候。我们通过假设:(a)相对于所考虑的气候变量,每个分类单元的理论丰度为25个单峰; (b)观察到的分类单元丰度26遵循多项式分布,其中样品的总丰度在气候上是27个不明智的; (c)在给定站点和时间的气候价值的估计使得28个观察结果最有可能,即它最大化对数可能性函数。此气候29估计值是通过将其气候公差的30反平方平方的加权分类单元丰度近似。我们通过考虑训练数据集中气候变量的频率31(FX)进一步改善方法。与WA-PLS相比,具有FX校正的TWA-PLS大大减少了压缩偏置,并基于广泛的现代花粉数据集改善了33个重建的模型性能。34
摘要。在这篇 Outlook 论文中,我们解释了为什么当通过使用系统生理增强功能性近红外光谱 (SPA-fNIRS) 同时测量系统生理活动(例如心肺和自主神经活动)时,可以促进对功能性近红外光谱 (fNIRS) 神经成像信号的准确生理解释。SPA-fNIRS 的基本原理有两个方面:(i) SPA-fNIRS 能够更完整地解释和理解在头部测量的 fNIRS 信号,因为它们包含源自神经血管耦合和系统生理源的成分。用 SPA-fNIRS 测量的全身生理信号可用于回归 fNIRS 信号中的生理混杂成分。因此可以最大限度地减少误解。(ii) SPA-fNIRS 能够通过将大脑与整个身体的生理状态联系起来来研究具身大脑,从而对它们复杂的相互作用产生新的见解。我们预计 SPA-fNIRS 方法在未来将变得越来越重要。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。全部或部分分发或复制本作品需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.030801]
摘要 建筑业数字化带来诸多好处,但其在印度的广泛应用面临障碍。本研究旨在识别和分析阻碍印度建筑业采用数字化的关键障碍。该研究采用多阶段研究方法,包括文献综述以确定潜在障碍。随后,对印度建筑业的 162 名专业人士进行了问卷调查。调查显示,印度建筑业愿意接受数字化,并列举了诸如提高生产力和对建筑流程产生革命性影响等好处。大型组织表现出更大的积极性,而小型企业面临资源和知识方面的挑战,导致采用率较低。该研究确定了五个关键障碍主题,包括财务/资源限制、文化/组织限制、区域差异、数据安全/隐私问题以及意识/能力建设限制。这项研究的意义在于揭示关键障碍并为量身定制的干预措施提供见解,帮助利益相关者、政策制定者和研究人员驾驭印度建筑业不断发展的数字化格局。这项研究有助于探索印度建筑专业人士对印度建筑业尚未完全接受数字化的原因的看法。
2024 年 3 月 13 日 — 建模与设计)、微电子学和量子电子学、计算电子学、天线设计、人工智能 gurmohan@cdac.in。9417483045。
2024 年 6 月 7 日 — 可再生能源与存储(仅存储部分)。2. 太阳能热能... 大规模使用可再生能源进行清洁烹饪(政府或公共部门)。
- 事实之后的全球平均海平面上升可以推断为领先顺序 - 模型无法直接模拟海平面上升驱动的海岸线变化•在新鲜的沿海水域中,风向驱动的加速误差高达〜4.5%•〜约1%的开放环境或季节性温度的大小的错误•与垂直动态模式相比,垂直动态结构,这是相当的,这是相比的,这是相比的 - 这是相比之下。
本文介绍了一种使用心电图 (ECG) 早期检测心脏异常的新型定制混合方法。ECG 是一种生物电信号,有助于监测心脏的电活动。它可以提供有关心脏正常和异常生理的健康信息。早期诊断心脏异常对于心脏病患者避免中风或心脏猝死至关重要。本文的主要目的是检测可能损害心脏功能的关键心跳。首先,改进的 Pan-Tompkins 算法识别特征点,然后进行心跳分割。随后,提出了一种不同的混合深度卷积神经网络 (CNN) 在标准和实时长期 ECG 数据库上进行实验。这项工作成功地对几种心跳异常进行了分类,例如室上性异位搏动 (SVE)、心室搏动 (VE)、心室内传导障碍搏动 (IVCD) 和正常搏动 (N)。所获得的分类结果显示,使用 MIT-BIH 数据库的分类准确率达到 99.28%,F 1 分数为 99.24%,而使用实时获取的数据库的分类准确率下降为 99.12%。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
世界海洋陷入困境。全球变暖导致海平面上升,减少了海洋中的食物供应。入侵物种和霍乱破坏了海洋的生态平衡。农业中使用的许多杀虫剂和营养物质最终流入沿海水域,导致氧气耗尽,杀死海洋植物和贝类。与此同时,由于过度捕捞,鱼类供应正在减少。然而,人类要繁荣发展,就需要健康的海洋;我们呼吸的氧气有一半来自海洋,而且在任何特定时刻,海洋都包含着世界上 97% 以上的水。海洋提供了人类食用的动物蛋白的至少六分之一。活海洋吸收大气中的二氧化碳,减少气候变化的影响。许多民间社会团体 (NGO) 正在努力保护这一共享资源。例如,OceanMind 使用卫星