摘要 成簇的规律间隔短回文重复序列(CRISPR)和CRISPR相关蛋白(Cas)是细菌和古菌中对抗入侵核酸和噬菌体的适应性免疫系统。根据效应蛋白的组成,CRISPR/Cas大致分为多种类型和亚型。其中,VI型CRISPR/Cas系统尤受关注,有VI-A、VI-B、VI-C和VI-D四个亚型,被认为从转座子进化而来。这些亚型在结构架构和机制上表现出差异,具有多种Cas13a(C2c2)、Cas13b1(C2c6)、Cas13b2(C2c6)、Cas13c(C2c7)和Cas13d效应蛋白。CRISPR/Cas13 核糖核酸酶将前 crRNA 加工成成熟的 crRNA,后者在病毒干扰过程中靶向并敲除噬菌体基因组的单链 RNA。这种蛋白质的高特异性 RNA 引导和 RNA 靶向能力使其能够与多种效应分子融合,为 Cas13 介导的 RNA 靶向、追踪和编辑领域开辟了新途径。CRISPR/Cas13 具有靶向包括植物在内的 RNA 的独特功能,因此可以用作一种新的工具,用于工程干扰植物病原体(包括 RNA 病毒),具有更好的特异性,并可用于植物中的其他 RNA 修饰。荧光探针标记的失活可编程 Cas13 蛋白可用作体外 RNA 研究的替代工具。工程化的 Cas13 也可用于可编程的 RNA 编辑。CRISPR/Cas13 的高靶向特异性、低成本和用户友好的操作使其成为多种基于 RNA 的研究和应用的有效工具。因此,本章的重点是 CRISPR/Cas 系统的分类、VI 型 CRISPR/Cas 系统的结构和功能多样性,包括其发现和起源、机制以及 Cas13 在植物 RNA 编辑中的作用。
对准确的3D手姿势估计的追求是理解以自我为中心视力领域的人类活动的基石。大多数现有估计方法仍然依赖单视图像作为输入,从而导致潜在的局限性,例如,深度有限的视野和义务。解决这些问题,添加另一个相机以更好地捕获手的形状是实践方向。然而,现有的多视图手姿势姿势方法具有两个主要缺点:1)重新训练的多视图注释,这些注释是备用的。2)在测试过程中,如果相机参数/布局与训练中使用的相同,则模型将变为inpapplicable。在本文中,我们提出了一种新颖的单算观看改编(S2DHAND)解决方案,该解决方案将预先训练的单视估计器适应双视图。与现有的多视图训练方法相比,1)我们的适应过程是无监督的,消除了对多视图注释的需求。2)此外,我们的方法可以处理带有未知相机参数的Arbitarary双视图对,从而使该模型适用于不同的相机设置。具体来说,S2DHAND建立在某些立体声约束上,包括两种视图之间的成对跨视图共识和转换的不变性。这两个立体声约束以互补的方式使用来进行伪标记,从而允许可靠的适应性。评估结果表明,在内部和跨数据库设置下,S2DHAND在任意摄像机对上实现了重大的实现,并且胜过具有领先性能的现有适应方法。项目页面:https://github.com/ut-vision/s2dhand。
幽门螺杆菌(H. Pylori)是全球引起慢性胃粘膜感染的主要病原体。在2011年至2022年期间,幽门螺杆菌感染的全球患病率估计为43.1%,而在中国,幽门螺杆菌感染的率略高,为44.2%。幽门螺杆菌持续定殖可导致胃炎,消化性溃疡和恶性肿瘤,例如粘膜相关的淋巴组织(MALT)淋巴瘤和胃腺癌。尽管引起了宿主的强大免疫反应,但幽门螺杆菌通过调节宿主免疫而在胃粘膜中繁荣发展,尤其是通过改变先天和适应性免疫细胞的功能,并抑制了对其存活不利的毒性反应,从而对临床管理提出了挑战。幽门螺杆菌与宿主免疫防御之间的相互作用是复杂的,涉及通过修饰表面分子,操纵巨噬细胞功能以及调节T细胞反应以逃避宿主识别的,以逃避免疫监测。这篇综述分析了幽门螺杆菌的免疫病和免疫逃避机制,强调了鉴定新的治疗靶标和制定有效的治疗策略的重要性,并讨论针对幽门螺杆菌的疫苗的发展如何为消除这种感染提供新的希望。
SUPSHIP 将指定一名 FOIA 协调员,公众和 SUPSHIP 人员将向其提出所有 FOIA 查询或问题。主管可以充当发布权人,也可以将发布权委托给 FOIA 协调员。承包官员应避免与公众(包括潜在投标人)讨论 FOIA 问题。所有与 FOIA 请求相关的对话都必须记录在 FOIA 协调员的请求文件中。由于 SUPSHIP 有 NAVSEA 法律顾问办公室代表,因此他们对其活动收到的 FOIA 请求拥有初步拒绝权。此权力仅委托给主管。参考 (b),NAVSEAINST 5720.5B**,《信息自由法 (FOIA) 计划》,提供了更多详细信息。
背景 ................................................................................................................................ 1 目标 ................................................................................................................................ 2 交互系统 .............................................................................................................................. 2 过去 .............................................................................................................................. 2 现在 .............................................................................................................................. 2 未来 .............................................................................................................................. 3 实用性和可用性 ............................................................................................................. 4 实用性 ............................................................................................................................. 4 可用性 ............................................................................................................................. 4 为什么 HCI 很重要? ............................................................................................................. 5 生产力 ............................................................................................................................. 5 生活质量 ............................................................................................................................. 5 安全关键系统
以色列的科技实力 以色列以其强大的科技实力而闻名,因其创业公司数量之多与人口规模相比相当,因此被称为“创业国度”。安全机构与学术部门合作开发的通信领域技术和能力使以色列能够在 20 世纪 90 年代充分利用不断发展的互联网。当时,许多以色列公司,其中包括 Checkpoint、Amdocs 和 Nice,牢固地确立了以色列在通信、安全、数据存储和半导体领域的领先地位。此外,以色列的创业文化促进了创新型公司的成长,这些公司为该国成功的技术生态系统做出了巨大贡献。 197
铁是一种丰富的化学元素,自古以来就以钢和铸铁的形式用于制造工具、器皿和武器。[1,2] 钢铁目前每年的产量为 1.4 亿吨,是人类文明中最广泛利用的材料之一。[1] 如此高的产量和当前加工技术的高碳足迹,使钢铁成为现代社会减少材料对环境影响的首选材料。[3] 虽然全世界的大部分钢铁生产都用于制造致密的建筑结构元件,但人们也在探索将多孔铁块用于催化、[4] 储能、[5] 组织再生 [6] 和结构应用。[7] 对环境影响较小的轻质结构的需求日益增长,人们对此类多孔金属以及它们对旨在更有效地利用自然资源的非物质化战略的潜在贡献的兴趣日益浓厚。海绵铁是通过将矿石在熔点以下直接还原而获得的,是多孔金属最早的例子之一。[8] 由于其强度相对较低,这种多孔铁在过去被用作制造致密结构的前体。多孔金属的低强度源于众所周知的材料强度和相对密度之间的权衡。[9] 根据 Gibson-Ashby 分析模型的预测,[10] 多孔和胞状结构的强度和刚度与固相相对密度 (φ) 呈幂律关系:P∼φm,其中 P 是关注的属性,m 是缩放指数。重要的是,高度多孔的大型结构(φ<0.20)通常表现出的刚度和承载能力远低于这种简单分析模型的预期水平。 [11] 事实上,实验和计算研究表明,当材料的相对密度接近其渗透阈值时,只有一小部分固相能有效地增加多孔结构的刚度。[12,13] 这是因为在多孔网络结构整体变形过程中存在未受载荷的悬挂元素。[14]
KCH引擎盖还旨在疏散与大型蒸汽生产设备一起使用时可能在其内部容积内形成的冷凝滴。引擎盖配备了安装在容积量的所有四个侧面上的排水沟系统。该系统收集从侧面流动的水滴和引擎盖的天花板,其钻石点的形状有助于其流动。这些规定通过限制凝结滴在烹饪设备上的风险来大大改善卫生。
碳捕获和储存既可以减少温室气体的排放,又可以提供负排放,以促进向零净社会的过渡。在跨部门能源系统模型中研究了碳捕获和储存的贡献。但是,这种模型通常专注于成本和温室气体的排放,而仅研究单个技术的更广泛的环境影响。在这里,我们通过将能源系统建模与生命周期评估相结合,分析了向零排放的经济和环境影响。我们专注于二氧化碳存储对经济或环境影响的含义。在我们对德国能源系统的过渡到2045年的调查中,零排放需要最少的碳捕获和储存量。然而,通过避免投资于材料密集型技术,例如在具有低发电潜力的领域的领域,将二氧化碳储存量增加到最低量的最低量显着降低了16个影响类别中13个影响类别中的成本和环境影响。在没有电力进口的情况下,二氧化碳存储在2045年的118吨至379吨之间,当二氧化碳存储量最小化时,成本增加了105%。为消除储存的最后23吨二氧化碳而产生的成本增加84%。应用碳捕获和存放的好处是可再生电力进口和需要补偿的残余排放量的变化。因此,结果表明,碳捕获和储存可以在过渡到温室气体排放以外的净零能源系统中提供经济和环境利益。
技术挑战 发展中的挑战。过去,以色列国防军、工业界和学术界之间的关系是这样的:军队主导技术发展,而商业公司和学术界采用所开发的技术。近年来,这种情况发生了逆转:商业公司进行大部分开发,而军队采用技术并使其适应其需求。230 这给开发高质量的安全技术带来了困难,因为军队不具备所需的专业知识。虽然民用人工智能公司依赖高级学者或领先的学术机构,但安全机构在开发基于人工智能的知识或产品方面面临挑战。此外,安全机构不从事独立研究和开发,而独立研究和开发是实现比较优势所必需的未来专业能力的基础设施。然而,安全机构目前正在缩小与民用工业的差距。将民用技术用于军事用途。将民用技术用于军事用途带来了挑战,因为它会导致算法提供不合适的解决方案,因为算法是针对其他需求进行训练的。231