耕种的淡水虾(Macrobrachium Rosenbergii)和黑老虎虾(Penaeus Monodon)构成了孟加拉国海鲜出口的很大一部分,从而引起了人们对环境影响的担忧。淡水虾农场需要相对较高的饲料供应量,释放1.0吨Co 2-均等年/年,相当于18.8千克CO 2 E/MT虾,对全球变暖和气候变化的风险做出了重大贡献。综合多营养养殖(IMTA)为传统的大虾养殖系统提供了另一种耕作方法,因为它可以最大程度地减少温室气体(GHG)排放和气候变化的影响。系统地回顾了关于IMTA的112篇科学文章,本文提出了采用IMTA来推广孟加拉国可持续淡水虾种植的建议。imta正在世界许多地方进行广泛的实验和实践,提供经济利益,社会可接受性和环境可持续性。除了本地虾类外,还有各种土著有机提取的淡水软体动物和无机的提取植物可用,可以无缝地用于量身定制IMTA系统。提取生物,包括虾农场内的水上软体动物和植物,可以有效地捕获蓝碳,从而有效降低温室气体排放并帮助减轻气候变化的影响。水生软体动物为鱼类和牲畜提供饲料,而水生植物则是双食物来源,并为农田的堆肥生产做出了贡献。对孟加拉国的IMTA的研究主要是在淡水池塘中的鳍鱼进行的,而虾农场的IMTA缺乏研究。这需要在大虾农民一级进行研究,以了解孟加拉国西南部虾产生地区的提取水生软体动物和植物的生产。
近年来,淡水和盐水水生食品行业经历了最显着的增长,并越来越被认为是促进繁荣的社会自我绩效和生态上的可持续替代方案。水产养殖生产中的一个主要经济和健康危险因素是健康控制,在热带和发展中国家中可能会发现更严重的影响。虽然宏基因组学对在水产养殖等农业工业领域的应用有很大的希望,但其采用仍然有限。因此,本研究旨在评估开发和应用宏基因组学在识别淡水水产养殖中病原体时的前景。WIPO数据库用于搜索使用宏基因组学开发的专利,以监测淡水水产养殖中的病原体。宏基因组方法已广泛用于不同的领域,例如医学,兽医,生物技术,农业,特别是在重点是不同生态系统中的微生物群落的研究中。在水产养殖中,宏基因组学的利用主要围绕研究抗生素耐药性基因,主要是在盐水农场中。尽管如此,淡水水产养殖,尤其是在鱼类和甲壳类动物中,与可持续发展目标密切相符,尤其是(SDGS)2、3、6和13。国家,例如美利坚合众国,韩国和加拿大,在利用元基因组学对淡水水产养殖的疾病监测的最前沿,其积极的专利发展证明了这一点。与生物信息学工具和数据库相结合的宏基因组分析代表了用于预防目的的环境监测的快速,安全且无创的方法。
摘要对暴露于Paraquat和帕金森氏病之间可能关系的最新证据进行了系统评估。进行了文献搜索,以确定所有最近发表的相关论文调查,审查或评论暴露于Paraquat和帕金森氏病之间的潜在关系。使用PubMed和Embase库数据库的MEDLINE使用搜索词“ Paraquat”和“ Parkinson”从2019年到2024年进行了搜索。咨询了用于报告系统审查的PRISMA指南,以及用于评估评论质量的AMSTAR2评估工具。在第一次搜索中总共确定了517个出版物,在更广泛的搜索中发现了923个出版物。删除重复项后,确定了21个出版物具有潜在的相关性。在2019年至2021年之间发表了已确定的队列研究,并使用农业健康研究(AHS)的数据代表了分析,该研究由美国国家卫生研究院设计和资助。这些研究表明,帕拉奎特暴露与帕金森氏病之间没有关联。随着最新分析的结果,没有令人信服的科学论据声称因果关系。这些研究不仅检查了普通人群群体,而且尤其是在职业暴露的人群中,发现没有统计学上的显着增加风险,也没有证据表明暴露反应关系。组织结论是一致的。在没有这些关键因果考虑的情况下,这些研究有助于整个流行病学数据库的矛盾,不存在的风险增加和剂量反应关系,缺乏实验证据,并且缺乏类似的(Analogus)在科学范围内的实践中,就没有类似的(Analogus)进行科学宣传,以实现科学的索赔。
高质量水的存在不仅对于人类的生存至关重要,而且对于动植物的福祉至关重要。这项研究旨在研究研究水,沉积物和水生生态系统中抗生素,内分泌破坏者和其他药物的发生的研究。这些物质与对人类和水生生物的众多不利健康影响有关,包括生殖问题和神经毒性作用。在医学和农业领域,抗生素的普遍利用使它们作为强大的环境污染物促进了它们的提升。从制药行业排放的废水构成了水生生态系统对抗生素污染的重要贡献者。这些药理学剂渗透到不同的环境壁ni,跨越地下水,地表水,土壤和废水处理设施,其浓度从纳米图到每升纳米图。同时,全球抗生素的不加区分和过度应用与抗菌耐药性有关,这是一种强大的全球健康紧急情况。本综述还深入研究了药物污染物对水生环境的影响,尤其是作为内分泌干扰化合物的影响。分析塔夫河和伊利河中的地表水每天揭示了大约6公斤药品的一致排放。该研究研究了特定的药物,例如二乙基甲虫(DES),氯曲替三,氯喹和抗肿瘤药物,从而阐明了它们对生殖周期的各种影响。水生生态系统中的药物污染物,源自废水,农业和处置不当的来源,通过生物蓄积和生物磁化持续和不利地影响生物体。这些污染物构成了重大的生态和健康风险,需要有效的缓解策略。
罗非鱼水产养殖因其经济生存能力和适应性而已成为全球鱼类生产的关键部分。但是,该行业面临疾病管理,水质控制和饲料优化方面的挑战。这项全面的综述研究了机器学习(ML)在解决罗非鱼水产养殖中的这些挑战时的应用。探索的关键领域包括疾病检测和诊断,水质监测,饲料策略优化和生产管理。评论重点介绍了采用的各种机器学习模型和方法,讨论了它们的有效性,并确定了未来的研发方向。调查结果表明,尽管机器学习为增强罗非鱼水产养殖提供了巨大潜力,但仍需要解决数据质量,集成和可伸缩性之类的挑战,以充分实现这些好处。
自由生活的变形虫(FLA)在自然界和人造环境中很普遍,它们可以通过形成囊肿在恶劣的条件下生存。研究发现,一些FLA物种能够显示出对人类健康的致病性,导致中枢神经系统,眼睛等严重感染。回收率极低。因此,必须在环境栖息地建立FLA的监视框架。许多研究调查了独立FLA的风险,但FLA与周围微生物之间的相互作用确定了生态系统中的微生物群落,并在很大程度上影响了公共卫生。在这里,我们系统地讨论了FLA和不同类型的微生物之间的相互作用,以及对环境中FLA的行为和健康风险的相应影响。特别是细菌,病毒和真核生物可以与FLA相互作用,并引起对FLA感染性的增强或抑制的影响,以及微生物社区的变化。因此,考虑到环境中FLA和其他微生物的共存对于降低环境健康风险至关重要。
图1全尺度实验设计,以识别微生物教育的有益细菌。为了长期有益效果,建议在幼虫阶段进行微生物教育(A部分,绿色)。在幼虫饲养过程中要添加到海水中的微生物可以通过(1)由无病原体的无病原体供体牡蛎引入,这些牡蛎总是使用紫外线处理的海水保存在受控设施中,严格的生物安全性扎环和管理程序,或(2)通过仔细添加了基于培养的多型细菌细菌混合物,或(2)。必须优化混合物及其组成的方法,以最大程度地吸收幼虫的吸收(浸入或以冷冻干燥的形式,延迟或同时与饲喂生物群体形式延迟或同时)。曝光窗口(从胚胎发生到幼虫阶段),必须调整暴露于细菌鸡尾酒的持续时间。饲养条件是应测试的其他参数(温度,连续流或批处理系统)。多应变细菌混合物(B部分,橙色)的定义是更好地预测有益特性的必要上游步骤。首先,必须创建一个可耕种的细菌库。这些细菌将优先与宿主分离。抗病机构的动物(如果益生菌旨在提高对特定传染病的抗药性)必须从几个地理部位和不同季节收集,以最大程度地提高细菌多样性。这样获得的细菌将被培养,纯化和冷冻保存。可以测试几种用于细菌培养的物理化学参数(培养基,温度),以增加细菌文库中的潜在生物多样性。通过16S rRNA编码基因的Sanger测序来鉴定收集的每个培养菌株。并行,必须在计算机预测分析中进行预测,以预测哪种细菌通常与宿主中的耐药表型相关(如果益生菌旨在提高对特定传染病的抗性)。这项相关研究将有必要将几个(元)条形码分析先前是在从抗性和敏感动物到指定疾病的微生物群上产生的。这些相关分析,再加上对科学文献的详尽研究,应该使可以从收集中预测可能是有益的益生菌候选者的细菌。然后,必须测试微生物暴露的有益作用(C部分,灰色)。短期效应将在幼虫阶段进行测试。应特别注意多晶体细菌混合物对幼虫的生存和生理学的影响,以测试暴露是有害,有益还是对幼虫发育和生长特性是有害的,有益的还是中性的。用于分子分析的抽样(即转录组,条形码,代谢,表观基因组分析)可能值得对微生物效应的分子基础解密。最后,将在随后的生命周期阶段测试长期有益作用:少年和成年人将受到病原体的挑战。
Original Article Effectiveness of aquatic motor intervention on motor skills and adjusting to aquatic environments among toddlers with visual impairment: A pilot study MICHAL NISSIM* 1 , KENNETH KOSLOWE 2 , YAEL RAUCH PORRE 3 , EINAT ALTER 4 , RUTH TIROSH 5 1 Special Education Department, The David Yellin Academic College of Education, ISRAEL 2,3,4 Eliya-Association for Blind and Visually Impaired Children,以色列5水疗,以色列艾林医院在线发布:2024年5月31日(接受出版于2024年5月15日,doi:10.7752:10.7752/jpes.2024.05119方法:在这项试验研究中,将8至36个月的视觉障碍的三十三名幼儿随机分为两组:干预组同时接受了30分钟的水上运动干预和30分钟的物理疗法课程,每周一次,每周一次,持续12周,对照组每周仅接受30分钟的物理治疗,为期12周。使用了Peabody Developmental Motor Scales – 2nd Edition(PDMS-2),水取向测试ALYN1(WOTA1)和前视觉评估(PREVIAS)。目的:本研究旨在评估物理治疗和水生运动干预对视觉障碍的幼儿运动技能,调整和水功能的影响。另一个目标是研究运动技能,视觉功能以及视觉障碍的幼儿中水中的调整和功能之间的关系。结果:统计分析显示,运动技能和对象操纵的时间和研究组之间存在显着相互作用。PDMS-2总分[F = 5.2,P <0.05]和对象操作[F = 5.89,P <0.01]与对照组相比,干预组的时间显着改善。此外,结果表明,视觉障碍的幼儿中水的调整和功能有了显着改善。分析显示干预组[t(17)= -8.62,p <0.01]发生了重大变化。但是,PDMS-2总分(M = 13.54,SD = 9.48)的变化与WOTA1分数变化(M = 7.05,SD = 3.47)[R(16)= 0.68,P> 0.05]之间没有发现显着相关性。结论:这项研究强调了物理疗法和水生运动干预在增强运动技能并促进对视觉障碍的幼儿的适应水环境方面的有效性。这些发现主张将这种干预措施整合到早期干预计划中,以更好地支持视觉障碍的幼儿的发展需求。关键词:早期干预;水疗;婴儿;视觉残障引言视觉障碍是幼儿中普遍的感觉障碍(Solebo&Rahi,2014年),这是由各种病因引起的,包括遗传状况,产前或围产期感染,早产,创伤和环境影响(Yahalom等人(Yahalom等人,20222))。视觉障碍对幼儿发展的影响是累积的(Sonksen&Dale,2002)。扭曲的视觉信息破坏了信息处理和解释,导致发展延迟。先前的研究强调,与典型的同龄人相比,视觉障碍的儿童在实现发展里程碑方面的滞后滞后(Alon等,2010),具有各种运动技能的特定延迟(Elisa等,2002; Hallemans等,2011)。在六个月的大约六个月大的时候,幼儿通常开始表现出自愿运动模式和总体运动技能,从而积极探索他们的环境。但是,具有视觉障碍的幼儿可能会遇到延误运动技能的延迟,包括爬行,站立和独立步行。他们也可能会面临精细运动技能的挑战,例如伸出手和抓住小物体,这些物体需要眼镜(Braddick&Atkinson,2013; Celano et al。,2016; Prechtl等,2001)。考虑到生命的头几年的高神经塑性,应尽早开始对视觉功能和运动技能的干预(Yin等,2019)。研究表明,通过早期干预,视力障碍的儿童可以达到与普通人群相当的功能水平(Saklofske等,2002)。神经科学的研究支持了早期干预对具有视觉障碍的幼儿发展的重要性。在关键时期,视觉皮层的发展受视觉和运动体验的影响,这种神经灵活性受到视觉刺激和运动活动的影响。然而,自出生以来的视觉经历有限,会阻碍视觉皮层中神经元的成熟(Fazzi等,2005)。尽管对早期干预对残疾幼儿的重要性得到了广泛认可(Novak&Morgan,2019; World Health
了解地球系统不同隔室中大气人为碳(C)的重新分配是地球科学的优先事项。C周期的全球数值建模是理解大气,大陆和海洋之间C循环的基本工具之一。然而,地球系统模型和其他大规模模型仍然缺乏对沿着土地到海水连续体(LOAC)在调节陆地生态系统和海洋之间进行调节有机碳(OC)交换中的作用的全面描述。水生生态系统能够在其积累的沉积物中隔离有机碳(即有机碳埋葬(OCB))是了解LOAC在全球C周期中的作用的基本过程。然而,将此过程纳入C周期的大规模数值模型仍处于早期阶段。在这里,我们回顾了沿LOAC涉及的生态系统过程以及不同作者使用的术语,OCB测量方法,大规模C模型的结构,文献中可用的OCB速率以及其他用于建模目的的数据源。我们的目标是查明将LOAC沿LOAC纳入地球系统模型和其他大规模应用的障碍和潜在解决方案。我们确定在与LOAC沿LOAC沿着生态系统工作的不同科学学科中缺乏语言协调,并提出了有关OCB的受控词汇,以协助解决这一挑战。我们已经编制了沿LOAC(湖泊,水库,洪泛区和沿海生态系统)的生态系统的全局数据集,其中包括1163 OCB速率值,对应于713个单个生态系统,并在全球地理和生态系统中表现出强烈的偏见。我们还表明,几乎没有现有的大规模C模型沿LOAC融合OCB,尽管其中一些已经迈出了在全球范围内包含此过程的第一步。最后,我们分析了帮助铺平道路的挑战和潜在解决方案,以在C周期的大规模模型中沿LOAC整合OCB,包括在OCB建模研究中对多学科观点的迫切需求汇集了来自生态系统研究与LOAC研究的几个学科的研究人员。