在干旱地区,过度用水威胁着农业可持续性和整体生计。 必须最大程度地减少用水量解决这些问题。 日期棕榈(Phoenix dactylifera L.)是象征性的干旱地区和主要的水消费者作物。 将当前的灌溉系统定制到新的水,效率高效的系统中可以帮助应对这种作物的水消耗。 与植物相关的微生物群落对于农业可持续性至关重要,可以提高受水稀缺威胁的地区的用水效率。 因此,当将农业系统适应当前的全球变化设置时,应认真考虑这些社区。 但是,目前尚无有关这些修饰对日期棕榈微生物群落的影响的信息。 这项研究强调了不同土壤水系统(洪水和滴灌,自然条件和废弃农场)对不同土壤深度处的棕榈根真菌群落的影响。 调查结果表明,土壤水系统对真菌群落有明显影响,并且滴灌减少了真菌的多样性,但增加了丰富的羊膜菌根真菌。 我们表明,在所有采样深度上,这些效果都是相似的。 最后,由于根建筑是吸水的主要决定因素,因此我们在这些不同的土壤水系统下揭示了根建筑的不同行为至160 cm的深度。在干旱地区,过度用水威胁着农业可持续性和整体生计。必须最大程度地减少用水量解决这些问题。日期棕榈(Phoenix dactylifera L.)是象征性的干旱地区和主要的水消费者作物。将当前的灌溉系统定制到新的水,效率高效的系统中可以帮助应对这种作物的水消耗。与植物相关的微生物群落对于农业可持续性至关重要,可以提高受水稀缺威胁的地区的用水效率。因此,当将农业系统适应当前的全球变化设置时,应认真考虑这些社区。但是,目前尚无有关这些修饰对日期棕榈微生物群落的影响的信息。这项研究强调了不同土壤水系统(洪水和滴灌,自然条件和废弃农场)对不同土壤深度处的棕榈根真菌群落的影响。调查结果表明,土壤水系统对真菌群落有明显影响,并且滴灌减少了真菌的多样性,但增加了丰富的羊膜菌根真菌。我们表明,在所有采样深度上,这些效果都是相似的。最后,由于根建筑是吸水的主要决定因素,因此我们在这些不同的土壤水系统下揭示了根建筑的不同行为至160 cm的深度。这项研究的结果为棕榈根建筑和相关的真菌群落提供了新的见解,尤其是在供水危机的背景下,这推动了农业系统的适应性。
这项研究是在2021 - 2024年间,在北方邦Modipuram的ICAR-印度农业系统研究所进行,以评估综合有机农业系统(IOFS)和综合农业系统(IOFS)的影响,并在土壤生物学特性中对土壤生物学特性对植物,Enzyme Active and enzyme vepent and Freat and corod and Foreal and Frol and Frol and Frol and Froleal corpors and Frol and Foreal system and Frol and Foreal system,coreat和Glod corpors and Foreal systern。iof始终在土壤健康指标方面表现出卓越的性能。在IOF下观察到较高的微生物种群(细菌,真菌和放线菌),尤其是在蔬菜作物下。与IFS模型相比,谷物作物下的土壤(食品系统)显示IOFS模型中细菌种群增加了约41%。类似地,在蔬菜系统下的土壤显示IOFS模型中真菌种群增加了32%。酶活性,包括脱氢酶,β-葡萄糖苷酶,尿素酶和碱性磷酸酶的活性在IOF中显着更高,并显着改善了果实和蔬菜作物。 饲料系统在IOF中显示出脱氢酶(36.8%)和β-葡萄糖苷酶(34.7%)的脱氢酶的改善,与IFS相比。 IOF还显示出易于提取的肾小球素(EEG)和总肾小球素(TG)的水平增加。 蔬菜系统的脑电图和TG分别提高了32%和14%,这表明弧形菌根真菌的活性增强了,碳和氮隔离的潜力。 这些发现突出了有机养分和害虫管理实践在促进土壤生育和可持续性方面的好处。酶活性,包括脱氢酶,β-葡萄糖苷酶,尿素酶和碱性磷酸酶的活性在IOF中显着更高,并显着改善了果实和蔬菜作物。饲料系统在IOF中显示出脱氢酶(36.8%)和β-葡萄糖苷酶(34.7%)的脱氢酶的改善,与IFS相比。IOF还显示出易于提取的肾小球素(EEG)和总肾小球素(TG)的水平增加。 蔬菜系统的脑电图和TG分别提高了32%和14%,这表明弧形菌根真菌的活性增强了,碳和氮隔离的潜力。 这些发现突出了有机养分和害虫管理实践在促进土壤生育和可持续性方面的好处。IOF还显示出易于提取的肾小球素(EEG)和总肾小球素(TG)的水平增加。蔬菜系统的脑电图和TG分别提高了32%和14%,这表明弧形菌根真菌的活性增强了,碳和氮隔离的潜力。这些发现突出了有机养分和害虫管理实践在促进土壤生育和可持续性方面的好处。
当前的常规农业系统在很大程度上依赖于矿物质肥料和化学植物保护产品的使用,从而造成了严重的环境后果和对化石资源的依赖性。土壤微生物有可能以更可持续的方式改善作物营养和健康。尤其是植物 - 共生植物植物菌根真菌(AMF)已被证明为植物提供了一系列好处。虽然天然AMF群落经常在作物场中耗尽,但已显示AMF接种到土壤中可以恢复其在土壤中的功能并支持作物产量。但是,这些效果通常与上下文有关。在某些站点时,AMF的应用带来了良好的结果,但在其他站点中却没有。最新的研究暗示了本地土壤微生物组在确定外部AMF是否带来理想的好处的作用。等离子体技术可能会提供潜在的解决方案来利用对不同站点观察到的条件,并提高AMF接种的有效性。血浆技术可用于不同的目的,以刺激或灭活生物系统,具体取决于生成类型和过程参数。,例如,高电能与空气或水等培养基相互作用,血浆诱导,提供物理(UV发射,电场)和反应性物种的化学产生 - 可用于消除有害微生物或有机污染物的特征。但是,该技术也可以用来刺激土壤微生物组和有益的微生物。血浆处理水对土壤微生物组的影响及其刺激有益土壤生物的潜力目前尚不清楚,应与莱布尼兹血浆科学技术研究所合作研究。一种可能的方法可能是应用血浆处理的水(PTW),该水可以暂时和局部削弱天然土壤微生物组,以实现更好的建立和改善接种AMF的好处。此外,已经表明,PTW可以对特定的有益微生物产生直接刺激作用,从而导致随后对作物性能的影响。目标
土壤微生物和酶通过促进土壤骨料形成和稳定性以及参与SOC循环和积累来在土壤有机碳(SOC)隔离中起关键作用。然而,土壤微生物和酶充当促进快速城市化过程中SOC动态变化的介体的影响尚不清楚。因此,本研究选择了中国南昌市(505 km 2)的建设区域,作为研究区域。采样调查,以区分不同的城市化水平。使用土壤微生物群落和酶活性分析了城市化过程中不同聚集体的动态变化的驱动因素。结果表明,随着城市化强度的增加,SOC含量和股票都显着下降(p <0.05)。在0.25–1 mM的聚集体中观察到最高的SOC股票和贡献率,它们受到城市化的显着影响(p <0.05)。此外,革兰氏阳性细菌(G+)和放线症的生物量以及低腹膜化区域中N-乙酰基葡萄糖氨基酶和酸性磷酸酶(AP)的活性显着高于高腹化区域(P <0.05)。soc与真菌,羊膜霉菌真菌,G+,革兰氏阴性菌,静脉肌动症,原生代,β-1,4-葡萄糖苷酶,N-乙酰基果糖酰胺酶,AP,catalase和Catalase和Catalase和Catalase。与土壤酶相比,土壤微生物在SOC固结中表现出更大的作用(22.7%)。 这些与土壤酶相比,土壤微生物在SOC固结中表现出更大的作用(22.7%)。这些此外,结构方程模型表明,城市化可以直接或间接导致骨料SOC的降低,从而改变土壤的物理化学特性并影响微生物和酶动力学。但是,较大的植被特征索引减轻了城市化对SOC的负面影响。总体而言,城市化对土壤碳储存产生了负面影响。将来,重要的是考虑着专注于改善土壤养分,维持土壤结构,保护现有城市树木并增强植物多样性的策略。
塞来昔布。在7周龄时,除了接受盐水治疗的动物外,所有动物都接受了S.C.每周一次注射AOM(15 mg/kg体重)2周。然后将大鼠维持在对照或实验饮食中,直到实验终止。体重在最初的8周内每周记录每周一次,然后每4周记录体重。每天监测动物的一般健康。该实验在第二次AOM治疗后50周终止,此时所有动物均被二氧化碳安乐死杀死。剖腹手术后,整个胃和肠道被切除并纵向打开,并用正常的盐水冲洗含量。使用解剖显微镜,大小的肠道肿瘤的位置,数量和大小严重地注意到了。用卡尺测量每个肿瘤的长度,宽度和深度。肿瘤体积(31)。其中v为音量。l是长度。w是宽度,d是
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系
1 Smolker, Rachel、Anne Petermann 和 Rachel Kijewski。2018 年。森林正处于危机之中,但生物技术并不是解决办法。The Hill。3 月 28 日。https://thehill.com/opinion/energy-environment/380363-the-forests-are-in-crisis-but-biotechnology-is-not-the-solution/ 2 Wilson, AK、JR Latham 和 RA Steinbrecher。2006 年。转基因植物中的转化诱导突变:分析和生物安全影响。生物技术和基因工程评论 23:209-237;Eckerstorfer MF、M. Dolezel、A. Heissenberger、M. Miklau、W. Reichenbecher、RA Steinbrecher 和 F. Waßmann。2019 年。欧盟对通过基因组编辑和其他新基因改造技术 (nGM) 开发的植物的生物安全考虑因素的看法。生物工程与生物技术前沿 7: 31;Tuladhar, R.、Yeu, Y.、Tyler Piazza, J. 等人,2019 年。基于 CRISPR-Cas9 的诱变经常引起靶向 mRNA 错误调节。自然通讯 10, 4056.;Li, J. 等人,2019 年。全基因组测序揭示 CRISPR/Cas9 编辑棉花植物中罕见的脱靶突变和大量固有遗传和/或体细胞克隆变异。植物生物技术杂志 17(5): 858–868;Wang, X.、M. Tu、Y. Wang 等人,2021 年。全基因组测序揭示 CRISPR/Cas9 编辑葡萄树中罕见的脱靶突变。园艺研究 8: 114。3 有关综述,请参阅 Kawall, K.、J. Cotter 和 C. Then。 2020. 扩大欧盟对农业基因组编辑技术的转基因风险评估。欧洲环境科学 32: 106。4 Commoner, Barry。2002. 揭开 DNA 神话:基因工程的虚假基础。哈珀斯杂志。2 月 1 日。https://grain.org/article/entries/375-unravelling-the- dna-myth 5 Wilson, A. 2021. 基因编辑作物和其他转基因作物会破坏可持续的粮食系统吗?Amir Kassam 和 Laila Kassam (eds.)。重新思考食品和农业。Woodhead Publishing。第 247-284 页。6 Benevenuto RF 等人。2017. 通过蛋白质组学和代谢组学分析确定转基因玉米对非生物胁迫的分子反应。PLoS ONE 12(2): e0173069。 7 Anthony, MA、Crowther, TW、van der Linde, S. 等人,2022 年。欧洲各地林木生长与菌根真菌组成和功能相关。ISME J 16,1327–1336。;Jacott, Catherine N.、Jeremy D. Murray 和 Christopher J. Ridout,2017 年。“丛枝菌根共生的权衡:抗病性、生长反应和作物育种前景”农学,7,第 4 期:75。;Lattuada 等人,2019 年。南里奥格兰德州内菌根与本地果树(桃金娘科)之间的相互作用。植物科学 29(4):1726-1738 8 Nguyen, HT 和 JA Jehle。 2007. 转基因玉米 Mon810 中 Cry1Ab 的季节性和组织特异性表达的定量分析。《植物疾病与保护杂志》114(2): 82-87;Lorch, A. 和 C. Then。2007. 转基因 MON810 玉米植株实际上会产生多少 Bt 毒素?绿色和平组织。https://www.testbiotech。org/sites/default/files/How%20much%20Bt%20toxin%20produced%20in%20 MON810_Greenpeace.pdf 9 Miller, ZD 等人。2019 年。为增加密度而改良的转基因火炬松 (Pinus taeda L.) 的解剖、物理和机械特性。木材和纤维科学 51(2): 1-10。 10 美国国家科学、工程和医学院。2019 年。森林健康和生物技术:可能性和注意事项。华盛顿特区:美国国家科学院出版社,第 94 页。 11 加拿大生物技术行动网络 (2022) 《全球转基因树木发展现状》www.cban.ca/globalstatus2020
植物科学招募访客简介传记迈克尔·巴拉什(PLB) - 学士学位,圣路易斯华盛顿大学环境生物学(2024年)。我的本科研究包括分析恢复物种池中的偏见,分别是物种保守主义对降级的草原景观中种子招募的影响。过高的草原福尔布斯(Grairie Forbs)通过纯活重测试了标准化的招聘,并在阶乘设计中接受了羊膜菌根真菌接种和除草的治疗方法。作为博士学位。 MSU的学生,我有兴趣继续对恢复高度保守的草原物种的动态进行类似的研究,这些动态通常未能以与矩阵或杂草差的本地Forbs相当的速度招募,并计划结合社区生态学,土壤生态学和功能性特质生态学,以发展对系统的理解。 我对Lars Brudvig博士的研究小组特别感兴趣,并且很想与Drs交谈。 Carolyn Malmstrom,Chris Blackwood和Laura Sullivan。 帕特里克·贝尔(Patrick Bell)(PBGB -HRT) - MS,植物生物学,罗格斯(Rutgers)(2024),BS,生物学,化学和教育专业的未成年人,沃伦·威尔逊学院(Warren Wilson College)(2010年)。 我的研究研究了榛子树的物际,杂种和新颖的阿维拉纳菌质种质,这与低于冷冻的天数有关。 我希望在MSU的博士学位使用植物育种来改善年度粮食作物中的非生物应激性。 Douches,Thompson,Vanburen和Jiang教授正在做有趣的工作,我很想亲自与植物弹性研究所的成员见面。作为博士学位。 MSU的学生,我有兴趣继续对恢复高度保守的草原物种的动态进行类似的研究,这些动态通常未能以与矩阵或杂草差的本地Forbs相当的速度招募,并计划结合社区生态学,土壤生态学和功能性特质生态学,以发展对系统的理解。我对Lars Brudvig博士的研究小组特别感兴趣,并且很想与Drs交谈。Carolyn Malmstrom,Chris Blackwood和Laura Sullivan。帕特里克·贝尔(Patrick Bell)(PBGB -HRT) - MS,植物生物学,罗格斯(Rutgers)(2024),BS,生物学,化学和教育专业的未成年人,沃伦·威尔逊学院(Warren Wilson College)(2010年)。我的研究研究了榛子树的物际,杂种和新颖的阿维拉纳菌质种质,这与低于冷冻的天数有关。我希望在MSU的博士学位使用植物育种来改善年度粮食作物中的非生物应激性。Douches,Thompson,Vanburen和Jiang教授正在做有趣的工作,我很想亲自与植物弹性研究所的成员见面。Caroline Bendickson(PLB) - 学士学位,与数学小学的生物学和化学专业,阿拉巴马大学的亨茨维尔大学(预计2025年5月)。 在哈德森帕(Hudsonalpha)生物技术研究所的Alex Harkess博士实验室中,我领导了一个独立的本科研究项目,该项目使用Angiosperms353 Bait捕获了trillium属的基于分子的系统发育,从而导致了第一批作者手动。 我还合作,与美国校园树基因组倡议一起,在奥本大学为Toomer's Oak(Quercus Virginiana)组装新的参考基因组。 目前,我正在帮助优化新型的计算管道矫正器,以识别可能影响各种富有ext exioial Agiosperms的SDR的性别确定的推定的植物直系同源物。 在研究生院,我的目标是使用计算方法来处理广泛的遗传学和进化问题,例如对各种植物种类的过程的调节,包括基因表达和口腔发育,以及我对Erich Grotewold博士,David Grotewold博士,David David Lowry博士,Bob Vanburen博士和Andrea案的实验室特别感兴趣。 Alex Bray(PLP) - 我目前正在与爱荷华州立大学的遗传学和全球卫生界未成年人攻读微生物学学士学位。 我在植物病理学方面最相关的研究经验一直在达伦·穆勒(Daren Mueller)博士的领导下,在科特瓦农业学院的两次实习期间。 我对蒂莫西·迈尔斯(Timothy Miles)博士,马丁·奇尔弗斯(Martin Chilvers)博士,亚历杭德罗·罗哈斯(Alejandro Rojas),格雷戈里·博尼托(Gregory Bonito),乔治·桑登(George Sundin)博士和米歇尔·赫林(Michelle Hulin)博士进行的研究特别感兴趣。Caroline Bendickson(PLB) - 学士学位,与数学小学的生物学和化学专业,阿拉巴马大学的亨茨维尔大学(预计2025年5月)。在哈德森帕(Hudsonalpha)生物技术研究所的Alex Harkess博士实验室中,我领导了一个独立的本科研究项目,该项目使用Angiosperms353 Bait捕获了trillium属的基于分子的系统发育,从而导致了第一批作者手动。我还合作,与美国校园树基因组倡议一起,在奥本大学为Toomer's Oak(Quercus Virginiana)组装新的参考基因组。目前,我正在帮助优化新型的计算管道矫正器,以识别可能影响各种富有ext exioial Agiosperms的SDR的性别确定的推定的植物直系同源物。在研究生院,我的目标是使用计算方法来处理广泛的遗传学和进化问题,例如对各种植物种类的过程的调节,包括基因表达和口腔发育,以及我对Erich Grotewold博士,David Grotewold博士,David David Lowry博士,Bob Vanburen博士和Andrea案的实验室特别感兴趣。Alex Bray(PLP) - 我目前正在与爱荷华州立大学的遗传学和全球卫生界未成年人攻读微生物学学士学位。我在植物病理学方面最相关的研究经验一直在达伦·穆勒(Daren Mueller)博士的领导下,在科特瓦农业学院的两次实习期间。我对蒂莫西·迈尔斯(Timothy Miles)博士,马丁·奇尔弗斯(Martin Chilvers)博士,亚历杭德罗·罗哈斯(Alejandro Rojas),格雷戈里·博尼托(Gregory Bonito),乔治·桑登(George Sundin)博士和米歇尔·赫林(Michelle Hulin)博士进行的研究特别感兴趣。我从事的项目包括优化核酸提取方法,以改善真菌病原体检测,进行种子健康质量测定法,以根据杀菌剂处理,场所和存储条件以及筛选各种农作物组织来评估真菌内生菌频率,以识别用于疾病抗性的疾病抗性成分,以识别用于传输表达和Vector Cresementering和Vector Eromentering的潜在遗传成分。作为密歇根州立大学的潜在博士生,我有兴趣在综合管理实践的背景下推进病原体检测技术和分析疾病的抗性。
