fi g u r e 1“绿色芽”模板,用于图2所示的分析。Y轴给出了PAS(百分比)的陆地或海洋生态系统的全球覆盖范围,其中量表的范围从0%到最大50%,这是最大全球PA覆盖率的最高普遍数字(Dinerstein等,2017,2019); X轴范围从低到高效率。“高”在有效性量表上表明,在严格的保护下(IUCN PA类别I和II),大多数PA都是最佳位置的,管理良好且资源充足。“低”表示大多数PA都位于低生物多样性价值的领域,具有较低的保护水平(Sensu IUCN PA类别V和VI),管理不善且融资不足。包围的“ C”用于表示PA覆盖范围的当前全局状态和估计有效性。数字“ 1”和“ 2”表示分别接近30%和50%PA覆盖率的情况,而不会克服影响当前有效性水平的障碍。数字“ 3”和“ 4”表示分别接近30%和50%PA覆盖率的情况,同时克服了当前PA有效性的障碍。增加颜色转变位置的不确定性是通过增加圆的模糊性来指示的。箭头在这里包括指导眼睛。其他信息:请参阅补充文本和图形和shoots_pa.xls(https://zenodo.org/recor d/7690684)。
摘要植物层拥有一个多样化和特定的细菌群落,从而影响了植物健康和生态系统功能。在这项研究中,我们研究了城市绿色地区的连通性和规模对植物层细菌群落的组成和多样性的影响。herto,我们评估了233个Platanus X Acerifolia和Acer Pseudoplatanus树的植物层细菌群落的多样性和组成,整个欧洲六个城市中的77个城市绿色地区。城市之间的社区组成和多样性显着差异,但仅在树种之间有限的程度。我们可以证明,城市强度与腓骨细菌的社区组成显着相关。尤其是,在50个最丰富的家族中有29个相对丰度与城市强度之间发现了显着相关性:经典的浮圈家族(例如乙酰杆菌科,planctctyctomycetes和beijerinkiaceae)的丰富性随着城市强度而降低(即在更绿色,较低的空气污染和较低温度的地区更丰富,而与人类活动有关的地区(例如肠杆菌科和芽孢杆菌科)随着城市强度的增加而增加。这项研究的结果表明,欧洲城市中的细菌群落与城市强度有关,这种影响是由几种组合应力因素介导的。
不重新生产是下一步,例如在包括洛杉矶太平洋帕利萨德斯(Pacific Palisades)社区的邮政编码中,降低了近70%的政策(约1,600户房屋),这是正在进行的A期间最严重的命中地区。野火。尚不知道其中有多少房屋被烧毁了,但是尽管保险公司发出了几个月的警告,但某些人指控它放弃了客户的行为,但有些人批评了这些房屋。根据州监管机构的说法,许多人发现了由国家支持的“最后的保险公司”被称为公平计划的承保范围。
本文提出了一种基于深度学习的可容纳性评估方法,构成了街头规模的智能手机点云和城市规模的3D行人网络(3DPN)。3DPN已被研究和映射以进行轮廓和智能城市应用。然而,由于省略的行人路径,未发现的楼梯和过度简化的高架人行道,文献中3DPN的城市水平尺度对于评估轮椅的可及性(即车轮)不完整;如果映射量表处于为轮椅使用者设计的微观级别,则可以更好地表示这些功能。在本文中,我们使用智能手机点云加强了城市规模的3DPN,这是一种有希望的数据源,用于补充细微的细节和由于厘米级别的准确性,鲜艳的色彩,高密度和人群源性质而导致的细颗粒细节和温度变化。三步方法重建行人路径,楼梯和坡度细节,并丰富城市规模的3DPN进行轮廓评估。PEDESTRIAN路径的实验结果表现出准确的3DPN中心线位置(miou = 88。81%),楼梯检测(miou = 86。39%)和轮子性评估(MAE = 0。09)。本文贡献了一种适合,准确和人群采购的轮子评估方法,该方法将无处不在的智能手机和3DPN架起高密度和丘陵的城市区域的3DPN。
在偏远岛屿或孤立地区等未联网地区,大规模整合太阳能可再生能源是一项挑战。事实上,这些地区的电网无法依赖大型电网的支持,更容易受到太阳能资源固有波动性和电网故障(如生产单元或输电线路突然故障)的影响。欧盟委员会资助的 TwInSolar 项目旨在提供支持和解决方案,以克服未接入大陆电网的岛屿地区面临的问题。作为该项目的一部分,向科学界介绍了四个研究案例,每个案例都强调了在留尼汪岛不同规模上观察到的具体问题。本文旨在详细描述四个选定的系统、相应的挑战以及可用的数据。
简介:表现出负血氧水平的大脑区域,依赖性脑血管反应性(BOLD-CVR)对二氧化碳(CO 2)的反应被认为遭受了完全耗尽的自动调节性脑血管储备的能力和表现出血管窃取现象。如果此假设是正确的,那么在基于电动机的BOLD FMRI研究中,血管窃取现象的存在应随后导致相等的FMRI信号响应(代谢增加而不会增加由于耗尽的储备能力而增加的脑血流),而其他功能性的脑组织则在其他功能性脑组织中。为了调查这一前提,这项研究的目的是进一步研究表现出负BOLD CVR的大脑区域中基于电动机的BOLD-FMRI信号反应。Material and methods: Seventy-one datasets of patients with cerebrovascular steno-occlusive disease without motor defects, who underwent a CO 2 -calibrated motor task-based BOLD-fMRI study with a fingertapping para- digm and a subsequent BOLD-CVR study with a precisely controlled CO 2 -challenge during the same MRI ex- amination, were included.我们比较了双侧前后Gyri - i的BOLD-FMRI信号反应。 e。感兴趣的区域(ROI)与此ROI中的相应BOLD-CVR。使用对42个接受相同研究方案的健康个体的BOLD-FMRI任务研究的第二级组分析确定ROI。结果:BOLD-CVR的总体下降与ROI内BOLD-FMRI信号响应的降低有关。对于表现出阴性BOLD-CVR的患者,我们发现基于正电动机和负电动机的BOLD-FMRI信号反应。结论:我们表明,对CO 2的负CVR响应的存在与基于Motor的BOLD-FMRI信号反应有关,其中一些患者表现出更大的假定 - 负面BOLD-FMRI信号反应,而其他患者则表现出阳性的BOLD-FMRI信号反应。此发现可能表明
摘要:沿海地区开发和海滩休闲用途的不断增加与沿海地区沉积物和沙子相关的公共卫生危害威胁日益增大。本研究采用适当的标准方法评估了尼日利亚翁多州阿拉罗米海滩沙子的微生物和垃圾特性。所得数据显示,分离出 29 种微生物,其中包括 17 种细菌、7 种真菌和 5 种酵母。微生物负荷范围为 1.45 × 10 -4 CFU/g 至 12.4 × 10 -4 CFU/g,符合世界卫生组织规定的允许限值(8 CFU/g 至 250 CFU/g)。然而,旅游活动频繁区和旅游活动稀少区的微生物负荷存在显著差异(t=0.011)。此外,海滩沙子被分为七类。然而,最常见的垃圾类型是干树叶和树枝形式的有机废物(59%),其次是塑料/聚苯乙烯(32%)。平均垃圾密度从 7 月份的 10.00 升/平方米到 12 月份的 21.57 升/平方米不等。没有废物处理和厕所设施。Araromi 海滩属于中度肮脏类别,在旱季和雨季的清洁海岸指数分别为 8.52 和 6.81。总体而言,这项研究的结果表明,Araromi 海滩仍处于欠开发状态,其所在社区是海滩上垃圾数量增加的主要原因。因此,建议为了吸引更多游客并改善整体海滩体验,当地社区和政府应投资定期海滩清理和废物管理计划,以保持海滩的原始状态。 DOI:https://dx.doi.org/10.4314/jasem.v29i1.29 许可证:CC-BY-4.0 开放获取政策:JASEM 发布的所有文章均为开放获取,任何人都可以免费下载、复制、重新分发、重新发布、翻译和阅读。 版权政策:© 2025。作者保留版权并授予 JASEM 首次出版权。本文的任何部分均可未经许可重复使用,但必须引用原始文章。引用本文为:ODEWUMI, O. S; QUIST, MM (2025)。尼日利亚翁多州 Araromi 海滩沙子的微生物负荷和凋落物特征分析。J. Appl. Sci. Environ. Manage. 29 (1) 229-237 日期:日期:收到日期:2024 年 10 月 22 日;修订日期:2024 年 11 月 20 日;接受日期:2024 年 12 月 28 日;发布日期:2025 年 1 月 31 日 关键词:沙尘特征;微生物负荷;海滩清洁度;垃圾密度 许多旅游景点通常位于城市内部,环境安静,以满足城市居民和邻近城镇居民的休闲需求。许多其他旅游景点则建立在城市外,为人们提供远离喧嚣喧嚣的城市生活的休憩之所(Odunlami 和 Ijeomah,2016 年)。提供此类休闲场所的最常见旅游类型之一是滨海旅游,它基于陆地和海洋交界处的独特资源组合,提供水、海滩、风景秀丽的游泳、划船、日光浴和冲浪等便利设施
职位描述沿海和海洋生物多样性顾问(4T)项目描述印度尼西亚,马来西亚,巴布亚新几内亚,菲律宾,菲律宾,所罗门群岛和帝汶 - 所谓的珊瑚三角(CT)的沿海和海洋地区 - 代表海洋生物多样性的全球全球生物多样性中心。相关的生态系统商品和服务提供了当地生计和国家蓝色经济体的来源,但与此同时,由于人类和气候变化引起的压力因素,它们越来越有风险。珊瑚三角的巨大规模及其复杂的生态连通性模式需要大规模的管理和保护其海洋资源的方法。在共同实施的珊瑚礁,渔业和粮食安全(CTI-CFF)的共同实施的珊瑚三角举措下,六个CT国家的政府以及一系列国家和地区伙伴的政府已经发起了针对性的努力,尤其着重于三个跨界海景。目前,这些处于不同的阶段,在关键政策框架和能力中剩下差距。区域计划“针对珊瑚三角的海洋和沿海弹性解决方案”(SOMACORE)旨在支持国家和地区利益相关者在六个CT国家的多层次方法中扩大验证的实践的努力。每个国家和海景的预见措施和活动包括对制定和实施部门战略和行动计划的支持,以及在地方和国家一级促进跨部门合作。扩展成功解决方案是该计划的核心,并且通过在不同层面的工作和不同利益相关者群体的参与得到支持。知识交流,联合学习,能力发展,技术支持和政策倡导旨在促进良好实践的复制。giz负责协调该计划的产出和结果的努力,并与六个CT国家的政府,珊瑚礁珊瑚礁,渔业和粮食安全(CTI-CFF)的珊瑚三角倡议的区域秘书处(CTI-CFF)以及全球范围内,国家和地区开展业务。在菲律宾,GIZ与生物多样性和渔业部门的关键参与者紧密合作,特别是与环境与自然资源部的生物多样性管理局,以及农业部的渔业和水生资源局,重点介绍了基于生态系统资源管理和基于生态资源的基于地区资源管理的菲律宾菲律宾组合中的有效地区的保护惯例。主要角色沿海和海洋生物多样性协调员/顾问将协调基于生态系统的资源管理活动在菲律宾的实施,重点是Sulu-Sulawesi海景。此角色包括对海洋保护区和MPA网络的技术和行政支持的贡献,在国家和地方层面威胁和迁徙海洋利益相关者。
土地利用变化和气候变化被认为是当前生物多样性下降的两个主要驱动力。保护区有助于保护景观免受其他拟人化障碍,并在正确设计后可以帮助物种应对气候变化的影响。当旨在保护区域生物多样性而不是保护焦点物种或景观元素时,受保护区需要覆盖区域生物多样性的代表性,并在功能上连接,从而促进网络中受保护区域中的个体移动,以最大程度地提高其有效性。我们开发了一种方法来定义有效的保护区,以生态代表性和功能连通性作为标准在区域网络中实施。我们在加拿大Que´bec的Gaspe'sie地区说明了这种方法。我们使用基于个体的模型模拟了濒临灭绝的大西洋天际驯鹿人群(rangifer tarandus caribou)的运动,以确定基于这种大型哺乳动物的功能连通性。我们创建了多个保护区网络方案,并评估了其生态反映性和对当前条件的功能连接性。我们选择了最有效的网络方案的子集,并提取了其中包括的保护区域。生态代表性与创建网络的功能连接之间的权衡。在最有效的网络中反复选择了可用的区域。最大化生态代表性和功能连通性的保护区代表了在有效保护区域网络中实施的合适区域。这些领域确保了该区域生物多样性的代表样本被网络涵盖,并最大程度地提高了保护区域之间和内部的随着时间的流动。
1 University of Reims Champagne Ardenne, Cognition, Health, Society Laboratory, EA 6291, 51100 Reims, France 2 Reims Center for Psychotherapy and Neuromodulation, 51100 Reims, France 3 University Center of Psychiatry, EPSM and CHU of Reims, 51100 Reims, France 4 McGill University, Douglas Mental Health University Institute, 11290 Montreal, Canada 5 Champollion National University Institute, Cognition Sciences, Technology & Ergonomics Laboratory, University of Toulouse, 81000 Albi, France 6 INSERM U1247 GRAP, Research Group on Alcohol and Drugs, University of Picardie Jules Verne, 80000 Amiens, France 7 Radiology Department, Reims University Hospital, 51100 Reims, France 8 University of Reims Champagne-Ardenne, CReSTIC Laboratory, 51100法国兰斯 9 兰斯大学香槟 - 阿登医学院,51100 兰斯,法国 通讯地址:Ksenija Vucurovic,Laboratoire Cognition, Santé, Société(C2S - EA 6291),UFR Lettres et Sciences Humaines,57 rue Pierre Taittinger,Reims Cedex 51096,法国。电子邮件:kvucurovic@chu-reims.fr。