在量子处理器中,在所需量子比特之间设计并行、可编程操作的能力是构建可扩展量子信息系统的关键 1,2 。在大多数最先进的方法中,量子比特在本地交互,受与其固定空间布局相关的连接的限制。在这里,我们展示了一种具有动态、非局部连接的量子处理器,其中纠缠的量子比特在两个空间维度上以高度并行的方式在单量子比特和双量子比特操作层之间相干传输。我们的方法利用光镊捕获和传输的中性原子阵列;超精细态用于稳健的量子信息存储,激发到里德堡态用于纠缠生成 3–5 。我们使用这种架构来实现纠缠图状态的可编程生成,例如簇状态和七量子比特 Steane 码状态 6,7 。此外,我们穿梭纠缠辅助阵列,以实现具有十三个数据和六个辅助量子比特的表面代码状态 8 以及具有十六个数据和八个辅助量子比特 9 的环面上的环面代码状态。最后,我们利用这种架构实现了混合模拟 - 数字演化 2 ,并将其用于测量量子模拟中的纠缠熵 10-12 ,通过实验观察与量子多体疤痕相关的非单调纠缠动力学 13,14 。这些结果实现了长期目标,为可扩展量子处理提供了一条途径,并实现了从模拟到计量的各种应用。
阴燃火灾的特点是会产生早期气体排放,其中可能包括由于热解或热降解而产生的高浓度 CO 和挥发性有机化合物 (VOC)。如今,独立的 CO 传感器、烟雾探测器或两者的组合是火灾报警系统的标准组件。虽然气体传感器阵列与模式识别技术相结合是早期火灾探测的宝贵替代方案,但在实践中它们存在某些缺点 - 它们可以检测到早期气体排放,但对干扰的免疫力较低,并且传感器时间漂移可能导致校准模型过时。在这项工作中,我们探索了气体传感器阵列在检测阴燃和塑料火灾的同时确保拒绝一系列干扰的性能。我们在经过验证的标准火灾室(240 立方米)中进行了各种火灾和干扰实验。使用 PLS-DA 和 SVM,我们评估了不同多元校准模型对该数据集的性能。我们表明校准模型在几个月后仍然具有预测性,但并未达到完美的性能。例如,校准 4 个月后,PLS-DA 模型提供 100% 特异性和 85% 灵敏度,因为该系统难以检测塑料火灾,其特征接近于干扰场景。尽管如此,我们的结果表明,基于气体传感器阵列的系统能够比传统的基于烟雾的火灾报警系统提供更快的火灾报警响应。我们还建议使用
背景:多电极阵列被广泛用于分析潜在的有毒化合物的影响,并评估神经保护剂对短期和长期培养中神经网络活性的影响。多电极阵列提供了一种对自发性和诱发神经元活性的非破坏性分析的方法,从而可以在体外对神经退行性疾病进行建模。在这里,我们提供了有关这些设备当前如何用于淀粉样蛋白β肽及其在阿尔茨海默氏病中的作用的概述,这是最常见的神经退行性疾病。主体::此处分析的大多数研究表明,神经元培养物对淀粉样蛋白β的聚集形式的快速反应,从而导致长期增强的峰值频率和障碍的增加。这反过来表明,该肽可能在引起阿尔茨海默氏病患者中观察到的典型神经元功能障碍方面起着至关重要的作用。
图 4 全头部 OPM 和混合 OPM/EEG 设计。(a – d)OPM 和混合 OPM/EEG 系统的误差指标与所考虑的头皮磁力仪数量的关系。两个系统的 r 95 的中值和最大值均与市售阵列(不同颜色)相对应的指标一起显示,这些指标是恒定的并且与 OPM 的数量无关。(e – g)仅 OPM(e)、混合 OPM/EEG(f)和完整 OPM ABC 160(g)阵列的等效不确定半径的空间分布,前两个阵列采用 100 个头皮磁力仪。(h – i)所有源的等效不确定半径的归一化直方图,采用线性(h)和半对数(i)尺度。(j)三个系统的 r 95 平均值与源深度的关系(每 5 毫米分箱一次)。 (k – l)最佳混合 OPM/EEG 阵列传感器位置(k)和布局(l)。EEG 电极和 OPM 分别用蓝点和红点表示
心脏内脑机构界面(BCIS)可以通过允许用户控制带有记录在大脑中的信号的效应器或辅助设备来恢复受重大瘫痪的人的功能。近年来,运动皮层中的心脏内植入物已用于灵长类动物和人类参与者的BCI控制(Ajiboye等人。2017; Bouton等。2016; Collinger等。2013; Hochberg等。2006; Santhanam等。 2006; Velliste等。 2008; Wodlinger等。 2014)。 最近,通过在体感皮质中刺激电极来添加体感觉反馈(Armenta Salas等人。 2018; Fifer等。 2020; Flesher等。 2016; Flesher等。 2019; Flesher等。 2021;休斯等人。 2020;休斯等人。 2020)。 鉴于心脏内BCI需要手术植入,因此必须在临床上可行多年才能稳定。 在人类和灵长类动物中都研究了这个问题,表明可以从汽车皮层中的电极可靠地记录信号,但设备没有失败,尽管有相当大的受试者间可变性,并且信号随着时间的流逝通常会降低(Bullard等人(Bullard等人) 2020; Chestek等。 2011;唐尼等。 2018;休斯等人。 2020;詹姆斯等人。 2013; Simeral等。 2011; Suner等。 2005)。2006; Santhanam等。2006; Velliste等。 2008; Wodlinger等。 2014)。 最近,通过在体感皮质中刺激电极来添加体感觉反馈(Armenta Salas等人。 2018; Fifer等。 2020; Flesher等。 2016; Flesher等。 2019; Flesher等。 2021;休斯等人。 2020;休斯等人。 2020)。 鉴于心脏内BCI需要手术植入,因此必须在临床上可行多年才能稳定。 在人类和灵长类动物中都研究了这个问题,表明可以从汽车皮层中的电极可靠地记录信号,但设备没有失败,尽管有相当大的受试者间可变性,并且信号随着时间的流逝通常会降低(Bullard等人(Bullard等人) 2020; Chestek等。 2011;唐尼等。 2018;休斯等人。 2020;詹姆斯等人。 2013; Simeral等。 2011; Suner等。 2005)。2006; Velliste等。2008; Wodlinger等。 2014)。 最近,通过在体感皮质中刺激电极来添加体感觉反馈(Armenta Salas等人。 2018; Fifer等。 2020; Flesher等。 2016; Flesher等。 2019; Flesher等。 2021;休斯等人。 2020;休斯等人。 2020)。 鉴于心脏内BCI需要手术植入,因此必须在临床上可行多年才能稳定。 在人类和灵长类动物中都研究了这个问题,表明可以从汽车皮层中的电极可靠地记录信号,但设备没有失败,尽管有相当大的受试者间可变性,并且信号随着时间的流逝通常会降低(Bullard等人(Bullard等人) 2020; Chestek等。 2011;唐尼等。 2018;休斯等人。 2020;詹姆斯等人。 2013; Simeral等。 2011; Suner等。 2005)。2008; Wodlinger等。2014)。最近,通过在体感皮质中刺激电极来添加体感觉反馈(Armenta Salas等人。2018; Fifer等。2020; Flesher等。2016; Flesher等。2019; Flesher等。2021;休斯等人。2020;休斯等人。2020)。鉴于心脏内BCI需要手术植入,因此必须在临床上可行多年才能稳定。在人类和灵长类动物中都研究了这个问题,表明可以从汽车皮层中的电极可靠地记录信号,但设备没有失败,尽管有相当大的受试者间可变性,并且信号随着时间的流逝通常会降低(Bullard等人(Bullard等人)2020; Chestek等。2011;唐尼等。2018;休斯等人。2020;詹姆斯等人。2013; Simeral等。2011; Suner等。2005)。2005)。
图 4 全头部 OPM 和混合 OPM/EEG 设计。(a – d)OPM 和混合 OPM/EEG 系统的误差指标与所考虑的头皮磁力仪数量的关系。两个系统的 r 95 的中值和最大值均与市售阵列(不同颜色)相对应的指标一起显示,这些指标是恒定的并且与 OPM 的数量无关。(e – g)仅 OPM(e)、混合 OPM/EEG(f)和完整 OPM ABC 160(g)阵列的等效不确定半径的空间分布,前两个阵列采用 100 个头皮磁力仪。(h – i)所有源的等效不确定半径的归一化直方图,采用线性(h)和半对数(i)尺度。(j)三个系统的 r 95 平均值与源深度的关系(每 5 毫米分箱一次)。 (k – l)最佳混合 OPM/EEG 阵列传感器位置(k)和布局(l)。EEG 电极和 OPM 分别用蓝点和红点表示
基于成簇、规则间隔、短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (Cas) 的系统彻底改变了许多生物体(包括植物)的基因组编辑。植物中的大多数 CRISPR-Cas 策略依赖于使用农杆菌进行遗传转化来提供基因编辑试剂,例如 Cas 核酸酶或合成向导 RNA (sgRNA)。虽然 Cas 核酸酶是编辑方法中的恒定元素,但 sgRNA 是靶向特异性的,通常需要筛选过程来识别最有效的 sgRNA。植物病毒衍生载体是将 sgRNA 快速有效地递送到成年植物中的一种替代方法,因为病毒具有基因组扩增和系统运动的能力,这种策略称为病毒诱导的基因组编辑。我们对马铃薯病毒 X (PVX) 进行了改造,以构建一种可在成年茄科植物中轻松表达多个 sgRNA 的载体。使用基于 PVX 的载体,本氏烟基因被有效靶向,在组成性表达化脓性链球菌 Cas9 的转化株系中产生近 80% 的插入/缺失。有趣的是,结果表明 PVX 载体允许表达不间隔 sgRNA 阵列,在成年植物组织中几天内实现高效的多重编辑。此外,可以从受感染组织或受感染植物种子再生的植物中获得无病毒编辑的后代,这些后代表现出高遗传双等位基因突变率。总之,这种新的 PVX 载体可以轻松、快速和高效地表达 sgRNA 阵列以进行多重 CRISPR-Cas 基因组编辑,并将成为跨不同植物物种(尤其是茄科作物)进行功能基因分析和精准育种的有用工具。
包络密度、孔隙率和孔隙体积。样品 ρ He ρ 环境 PV 总 V 微观 V 中观 V 宏观 (g/cm 3 ) (g/cm 3 ) % (cm 3 /g) (cm 3 /g) (cm 3 /g) (cm 3 /g) CX-2.7-5.6-EP 1.88 0.60 68 0.89 0.22 0.02 0.66 CX-2.7-5.6-LP 1.86 0.62 67 0.84 0.23 0.02 0.60 CX-2.7-5.6-VP 1.85 0.69 63 0.44 0.23 0.04 0.17 CX-2.7-6.5-LP 1.89 0.65 66 0.78 0.26 0.01 0.51 CX-2.0-5.6-LP 1.87 0.52 72 0.99 0.21 0.01 0.78 根据以上结果,加热过程到LP点的变化似乎是
石墨烯活性传感器已经证明了检测大脑电生理信号的有希望的能力。它们的功能特性,以及它们的灵活性以及预期的稳定性和生物相容性,使它们成为大规模传感神经界面的有前途的构建块。但是,为了为神经科学和生物医学工程应用提供可靠的工具,必须对该技术的成熟度进行彻底研究。在这里,我们使用无线,准商业媒体舞台上的同质性,灵敏度和稳定性评估了64通道石墨烯传感器阵列的性能,并演示了上皮石墨烯慢性植入物的生物相容性。此外,为了说明该技术检测从slow到高γ频带的皮质信号的潜力,我们在自由表现的啮齿动物中执行了长期无线记录的证明。我们的工作证明了基于石墨烯的技术的成熟度,该技术代表了慢性,宽频带神经传感界面的有前途的候选人。
在这项工作中,我们报告了一种新颖的技术,用于直径小于30 nm的纳米木制造技术,其长宽比大于20,而制造面积不受限制。更重要的是,可以同时制造具有多个直径的纳米柱。在我们的技术中,图案是由电子束光刻(EBL)编写的,在离子耦合等离子体(ICP)蚀刻期间,铬(Cr)lm被沉积为硬膜。在Cr边缘发生的天线效应会导致较小的硬面膜,因此随后可以形成直径较小的纳米膜。由于我们的技术独立于底物材料,因此它也可以应用于其他半导体材料,从而在许多领域中提供了有希望的应用。此外,还提供了基于本文中制造的纳米阵列的SERS模拟,以揭示拉曼频谱强度增强的起源。