摘要 :大多数抗菌肽 (AMP) 和抗癌肽 (ACP) 折叠成膜破坏性阳离子两亲性 α 螺旋,但其中许多也具有不可预测的溶血性和毒性。在这里,我们利用循环神经网络 (RNN) 区分活性与非活性、非溶血与溶血 AMP 和 ACP 的能力,以发现新的非溶血性 ACP。我们的发现流程包括:1) 使用生成 RNN 或遗传算法生成序列,2) RNN 分类活性和溶血,3) 选择序列新颖性、螺旋性和两亲性,以及 4) 合成和测试。对 33 种肽的实验评估产生了 11 种活性 ACP,其中 4 种不溶血,其特性类似于天然 ACP lasioglossin III。这些实验展示了机器学习直接指导发现非溶血性 ACP 的第一个例子。
症状,射线照相异常和替代诊断的排除)(6,7)。肉汤培养物通常需要12-16天才能识别出经常引起NTM PD的MAC物种,但是诊断样品质量和数量变化会延迟微生物学诊断和治疗反应的评估(8)。因此,需要快速且可重复的诊断测定法,以提高NTM PD诊断和治疗反应评估的速度和准确性。mac芽孢杆菌和其他病原体释放无细胞的DNA(CFDNA)进入循环中,因为它们的宿主的免疫反应裂解并清除了它们(9),以从血液样本而不是从感染部位衍生出的标本来微创诊断(10,11)。传统的分子诊断方法(包括PCR方法)通常缺乏始终检测到血液中病原体衍生的CFDNA所需的灵敏度,尤其是当病原体负担可能较低时(例如,感染早期或开始抗菌反应之前))。新的群集定期间隔短的短滴虫重复序列(CRISPR) - 基于CFDNA测定可以提高CFDNA检测效率,以允许在特定的诊断和及时治疗监测的血液样本中检测病原体衍生的CFDNA(12,13)。引导RNA - CAS12A/引导RNA复合物与其靶序列的介导的结合刺激其侧支裂解活性,从而降解猝灭的荧光寡核苷酸探针,以允许特异性,超敏感和浓度靶DNA检测(14,15)。我们假设血清MAC CFDNA可以准确检测MAC感染并监测其对治疗的反应,因为血清MAC CFDNA浓度应反映实时MAC负担,并且不受可能影响当前方法的痰液变化影响。在这项研究中,我们为血清MAC CFDNA开发了一种敏感的CRISPR分析,以允许基于MAC感染的快速,准确的非痰液检测,评估其对治疗的反应以及疾病复发的检测。我们的结果表明,CRISPR MAC血清结果准确检测MAC感染,并在MAC定向治疗开始后迅速而逐渐改变,这表明血清MAC
摘要。土壤是最大的陆生碳池。因此,了解控制土壤碳稳定和释放的过程对于改善我们对全球碳循环的理解至关重要。异营养呼吸是将土壤有机碳返回大气的主要途径。但是,并非所有由het-rotophophs使用的碳都具有这种命运,因为某些部分被保留在土壤中,因为生物量和生物合成的细胞外化合物。用于生物量生长的微生物消耗的碳的比例(碳使用效率或提示)是控制土壤碳库存的重要变量,但很难衡量。在这里我们表明,可以通过测量CO 2和O 2气体浓度来在实验室葡萄糖照射的土壤中继续监测提示,从而允许对微生物生物量生长的瞬时估计。我们得出了呼吸测量(RQ)之间的理论关系,在呼吸过程中产生的二氧化碳与二氧化碳的比率,以及识别底物和生物合成产品牛的影响的提示。假设生物合成的产物具有平均微生物的化学计量法,并且该基础主要是用于修正的葡萄糖,我们可以使用RQ并使用我们的理论关系来计算提示和从该生物量产生的产生。表明,在所有修订的治疗中,静态生物量的净增加最小,这表明这种新生产的生物量的大部分可能被转化为底物可用性,并且在新土壤有机体
我们的研究表明,研究中包括的 3 个阿魏属植物的根和种子中以及相似部位提取物中的总多酚含量 范围很大(表 2)。所研究样品根胶中酚类化合物的总含量范围为 985.7±14.4 μg GAE g -1 至 2772.7±57.3 μg GAE g -1。在 F. violacea 2772.7±57.3 μg GAE g -1 和 F. gigantea 985.7±14.4 μg GAE g -1 根胶中的多酚含量之间存在统计学上显著差异(P<0.001)。 F. kuhistanica 的该值 (2054.4±384.8 μg GAE g -1 ) 与 F. violacea 的该值接近 (p=0.016),但明显高于 F. gigantea 根胶中酚类化合物的浓度 (P <0.001)。