RosanaSimón-Vázquez,Nicolas Tsapis,Mathilde Lorscheider,AinhoaRodríguez,Patricia Calleja等。通过陷入PLGA-PEG纳米颗粒的亲脂前药治疗关节炎,改善了地塞米松药物的负载和效果。药物输送和转化研究,2022,12(5),pp.1270-1284。10.1007/s13346-021-01112-3。hal-04354571
1。Alsaab,H。等。2022年12月6日。药物2022,14(12),2728; doi:10.3390/pharmaceutics14122728 2。Jia,Z。等。 2022年9月20日。 正面。 Immunol。,秒。 癌症免疫和免疫疗法。 第13-2022卷。 doi:10.3389/fimmu.2022.952231 3。 Lasek,W。等。 2014年2月11日;癌症免疫学,免疫疗法。 doi:10.1007/s00262-014-1523-1 4。 nguyen,K。等。 2020年10月15日。 正面。 Immunol。,秒。 癌症免疫和免疫疗法。 第11-2022卷。 doi:10.3389/fimmu.2020.575597Jia,Z。等。2022年9月20日。正面。Immunol。,秒。 癌症免疫和免疫疗法。 第13-2022卷。 doi:10.3389/fimmu.2022.952231 3。 Lasek,W。等。 2014年2月11日;癌症免疫学,免疫疗法。 doi:10.1007/s00262-014-1523-1 4。 nguyen,K。等。 2020年10月15日。 正面。 Immunol。,秒。 癌症免疫和免疫疗法。 第11-2022卷。 doi:10.3389/fimmu.2020.575597Immunol。,秒。癌症免疫和免疫疗法。第13-2022卷。doi:10.3389/fimmu.2022.952231 3。Lasek,W。等。2014年2月11日;癌症免疫学,免疫疗法。doi:10.1007/s00262-014-1523-1 4。nguyen,K。等。2020年10月15日。正面。Immunol。,秒。 癌症免疫和免疫疗法。 第11-2022卷。 doi:10.3389/fimmu.2020.575597Immunol。,秒。癌症免疫和免疫疗法。第11-2022卷。doi:10.3389/fimmu.2020.575597
摘要双酚在食品和环境系统中广泛保留。少量的双酚A可以直接影响人类健康。然而,双足A的最近比色检测方法仍然符合诸如复杂操作和高盐溶液的影响等挑战,从而导致不准确的检测结果。在此,Ag 3 PO 4纳米颗粒是通过简单的共沉淀方法制备的,并且具有出色的漆酶模拟催化活性。在Ag 3 PO 4纳米颗粒的催化作用下,双酚A失去了电子,并与4-氨基 - 抗吡啶进一步反应形成红色物质。因此,首先基于模仿AG 3 PO 4纳米颗粒的漆酶活性来建立一种新型的双酚的快速比色方法。比色法的检测限制为低至0.222 mg·L -1,该限制低于中国国家卫生和计划生育委员会和美国食品和药物管理局。此外,比色方法对其他竞争目标表现出极好的选择性。进一步的研究证实了比色方法在实际食品和水样品中检测双酚A的准确性,可靠性和速度,这表明这种比色方法在实际应用中可能至关重要。
本文介绍了对自动零件的多酰胺6(PA6GF30)和聚碳酸酯(PC)多酰胺6(PA6GF30)多酰胺6(PA6GF30)多组分废物聚合物组成的混合物的研究研究。根据其成分的含量进行了对所获得的混合物的熔体流速进行比较分析。研究了混合物中成分的兼容性及其在获得的聚合物组成中的分布。证明了次级多组分混合物对物理和机械性能的组成的影响。显示了注射成型技术过程的预测主要参数的多组分聚合物废物的可能性。关键字:多组分聚合物废物,聚酰胺6,聚碳酸酯,注塑成型,次要加工。1。简介∗
抽象的纳米颗粒已成为药物研究和药物设计的主要参与者。通过将药物封装到纳米结构中,可以保留其稳定性,可以增强其溶解度,并且也可以增强其药代动力学特征。此外,使用药物载体可以为不同的药物靶向策略打开门,以提高药物的特异性并相应地降低毒性和副作用。存在许多纳米颗粒制备方法,最丰富的是基于乳液的,基于降水和基于聚合的方法。但是,这些粒子类型和输送方法不能提供最佳的传递。还必须考虑使用被动方法的durg定位策略。在本章中,将讨论最丰富的制备方法,并给出不同种类的纳米颗粒的示例。此外,将解释对药物输送至关重要的广泛研究的目标策略。
超质纳米颗粒(USNS)(纳米颗粒具有流体动力直径<10 nm)的临时发展,并在过去十年中开始在临床试验中出现。这些USN的大多数都显示出相同的特征,包括在血液中短暂的保留时间,快速肾脏清除率以及对达到肿瘤的被动靶向策略的缓解。通过这篇综述,Aguix USN的发展侧重于它们的临床用法,因为它们是被动靶向USN的临床用法,而且由于它们可能在各种前临床前肿瘤模型中验证的肽和单克隆抗体的生物功能化。结果,作者审查了所有当前可以采用和确认的生物功能化策略,这些策略是基于对文献的荟萃分析,即生物功能化的USNS药代动力学和生物分布材料是由USN所决定的,而不是由USN和活跃的靶向靶向小组决定的。另外,与被动靶向的Aguix USN相比,这种主动靶向策略可以改善靶向靶向的肿瘤效率,但也增加了其肿瘤的保留时间,这可能会导致减少注射量/支出的机会。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
根据国际能源署 (IEA) 和欧洲环境署 (EEA) 的数据,能源消耗量逐年增加。这刺激了人们对新能源的探索和现有能源效率的提高。据预测,到 2030 年,光伏设备将产生太瓦级能源,同时千瓦时成本也将降低 [1]。太阳能是最经济实惠的能源之一。硅基太阳能电池主要用于太阳能利用。大部分能源将由硅太阳能电池板产生。除了硅之外,还有各种多层复合材料,如 GaAs、CdTe、Cu(In,Ga)Se 2 和最近提出的钙钛矿结构 [2, 3]。后者价格昂贵,难以在工业规模上生产。此外,由于有毒成分,过期后处理也存在问题,使用此类复合材料违背了绿色化学的原则。硅的优势在于化学可用性、技术链的成熟度、电子元件(包括含有稀土元素的元件)的处理。同时,硅基太阳能电池的一个严重缺点是光电转换效率 (LECE) 相对较低,即最佳样品的转换效率不高于 25% [4,5]。硅的最高光敏性区域位于约 1 µ m,其 LECE 光谱与太阳发射光谱的对应性较差。通过将太阳辐射从紫外线和蓝色光谱范围向下转换为 1 µ m 光谱范围来提高硅太阳能电池板的效率是一项紧迫的任务,对于太空应用而言,这非常现实 [6– 9]。潜在的发射体是三价镱离子,因为它的近红外 (NIR) 发光带约为 1000 nm( 2 F 5 / 2 – 2 F 7 / 2 跃迁)[9–13],与硅电池的 LECE 光谱顶部高度重合。Ba 4 Y 3 F 17 [14–17] 是经过深入研究的新型发光基质之一,因为它表现出下转换发光的高量子产率 [14]。对于在这些光谱区域吸收的各种敏化阳离子,能量可以从紫外和蓝色光谱区域转移到镱。一种特别有效的能量转移机制是通过敏化剂离子的逐步弛豫,通过量子切割机制激发两个受体离子 [12, 13, 18, 19]。量子切割表现出高达 195% 的高量子效率系数,但 NIR 发光的量子产率较低。更有效的途径是在具有更高发光量子产率的系统中简单地降档。一种有前途的组合物是 Yb/Eu 掺杂对,因为铕的吸收光谱包含 UV 和蓝色光谱区域的几条线。镱发光的最高直接测量量子产率(2.对于 SrF 2 :Yb (1.0 mol %):Eu (0.05 mol %) 粉末,在 266 nm 泵浦下达到 5 % [20]。本文旨在合成 Ba 4 Y 3 F 17 :Yb:Eu 固溶体并研究其发光性能。该样品旨在用于增强硅太阳能电池的 LECE。
本期特刊专门介绍金纳米粒子 (Au NPs);这是一种在(电)催化、电子、传感、纳米生物技术、诊断和治疗等领域具有广泛应用的先进材料。为了满足特定应用的要求,可以轻松合成具有各种尺寸、形状和表面功能的 Au NPs。由于可见光范围内的表面等离子体共振 (SPR) 效应,它们具有独特的尺寸和形状相关光学特性,例如电磁波近红外 (IR) 光谱中的光吸收。这些特性使它们适用于基于 SPR 的生物传感器设备、表面增强拉曼散射研究 (SERS) 和生物医学应用,例如光动力疗法,其中光吸收会导致局部散热,可用于杀死癌细胞。欢迎提交全文、通讯和评论。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。