摘要:Ecocleanzyme Wash是一种基于Ecoenzyme的创新洗碗液,该液体源自有机废物的发酵,例如水果果皮,蔬菜废料,红糖和水。该产品为家庭需求提供了环保的解决方案,同时解决了次优的有机废物管理的挑战。三个月的生态酶发酵过程可产生富含天然酶的液体,具有抗菌,抗真菌和杀虫特性,能够分解有害的有机化合物。ecocleanzyme Wash提供了一种更安全的替代方法,这些液体通常含有可能污染水和土壤的有害化学物质。该产品不仅有效地清洁了器皿,还通过利用家庭有机废物来支持可持续性的概念。此外,Ecocleanzyme Wash有助于减少环境污染,通常是由管理不当的家庭废物引起的。在印度尼西亚,有机废物构成了最大的家庭废物,如果不受管理,则可能污染水,土壤和空气,导致各种健康问题,例如腹泻和由致病性微生物引起的皮肤感染。在ecocleanzyme Wash中使用生态酶是朝着促进再利用和可持续废物管理概念的切实一步,与政府有关废物处理的法规保持一致。该产品还有助于减少对生态系统的负面影响,并提高公众对管理有机废物的重要性的认识。本研究旨在提供有关基于生态酶洗碗液的生产过程的详细指南,涵盖了有机原料,发酵步骤和产品配方的利用。预计这项研究的结果可以作为开发其他环保产品的参考,并鼓励家庭废物管理中的创新。ecocleanzyme Wash是创建不仅满足家庭需求,而且对环境产生积极影响的产品的渐进步骤。
抽象的种间嵌合体与人类多能干细胞(PSC)具有巨大的前景,可以产生人性化的动物模型并为移植提供供体器官。然而,该方法目前受到嵌合胚胎最终代表的人类细胞的限制。通过基因编辑供体人类PSC制定了不同的策略来改善嵌合主义。然而,迄今为止,如果可以通过修饰宿主胚胎来增强动物的人类嵌合,则仍然无法探索。利用种间PSC竞争模型,我们在这里发现了视黄酸诱导的基因I(RIG-I)类似受体(RLR)信号传导,一种RNA传感器,在“赢家”细胞中在共培养小鼠与人PSC之间的竞争相互作用中起重要作用。我们发现,DDX58/IFIH1-MAVS-IRF7轴的遗传失活损害了小鼠PSC的“获胜者”状态及其在共培养过程中从进化遥远的物种中超过PSC的能力。此外,通过使用MAV缺乏小鼠胚胎,我们显着改善了未修饰的供体人类细胞存活。基于物种特异性序列的比较转录组分析表明,RNA的接触依赖性人向小鼠转移可能在介导跨物种相互作用中起作用。综上所述,这些发现在细胞竞争期间建立了RNA感应和先天免疫力在“赢家”细胞中的先前未认识的作用,并为修改宿主胚胎而不是供体PSC提供了概念概念,以增强种间嵌合体。与失败者HPSC相反,关于颁布巨型股票的获胜者地位的原因知之甚少。主要文本使用人多能干细胞(HPSC)生成种间嵌合体的技术是研究人类发育的一个有前途的在体内平台,并为动物中生长人体供体器官的潜在来源提供了1,2的潜在来源。尽管在密切相关的物种3,4之间可以实现强大的嵌合体,但在进化上遥远的物种之间产生嵌合体的难度要困难得多。动物中人类细胞(例如,小鼠和猪)的低嵌合体大概是由于早期发育过程中多个异类障碍物所致,其中包括但不限于发育速度的差异,细胞粘附分子的不兼容性,细胞粘附分子的不相容性以及种间细胞竞争。通过遗传抑制人类细胞凋亡6-10,已经制定了几种改善动物胚胎中人类细胞嵌合体的策略。但是,这些策略对于在再生医学中的未来使用是不切实际的,因为改良的基因和途径主要是致癌的。通过编辑宿主胚胎来改善未修饰的供体HPSC的生存和嵌合体是首选的解决方案,但尚未探索。我们以前开发了一种种间PSC共培养系统,并在启动但不幼稚的人和小鼠PSC之间发现了竞争性相互作用,从而通过凋亡通过赢家小鼠epierblast干细胞(MEPISC)消除了失败者HPSC。HPSC中MyD88,p65或p53的遗传灭活可能会克服人鼠PSC竞争,从而改善小鼠胚胎早期的人类细胞存活和嵌合。为此,我们进行了单独培养和共同培养的Mepiscs的RNA测序(RNA-Seq)。H9
在编制《2021 年综合报告》时,我们参考了价值报告基金会发布的《国际综合报告框架》以及经济产业省发布的《协作价值创造指南》。在此过程中,我们创建了一个沟通工具,将财务和非财务信息系统地结合到我们的战略故事中,旨在进一步发展全球本土(全球和本地)价值创造管理。我们将继续努力丰富报告内容,希望它能够促进包括我们的股东和其他投资者在内的广大读者更深入地了解集团。
参考文献1。Divincenzo,D。P.量子计算的物理实施。Fortschritte der Physik:物理进展48,771(2000)。2。Ladd,T。D.等。量子计算机。自然464,45(2010)。3。Ito,T。等。四个四倍量子点中的四个单旋rabi振荡。应用物理信函113,093102(2018)。4。Mills,A。R.等。将单个电荷穿过一维硅量子点。自然传播10,1063(2019)。5。Mortemousque,P.A。等。在二维量子点阵列中对单个电子旋转的相干控制。自然纳米技术(2020)。6。损失,D。,Divincenzo,D。P.用量子点进行量子计算。物理评论A 57,120(1998)。7。Veldhorst,M。等。具有容忍控制的可寻址量子点量子量子。自然纳米技术9,981(2014)。8。Veldhorst,M。等。硅中的两分逻辑门。自然526,410(2015)。9。Takeda,K。等。 天然硅量子点中的易耐故障可寻址自旋值。 科学进步2,E1600694(2016)。 10。 Watson,T。F.等。 硅中可编程的两分量子处理器。 自然555,633(2018)。 11。 Zajac,D。M.等。 电子旋转的共同驱动的CNOT门。Takeda,K。等。天然硅量子点中的易耐故障可寻址自旋值。科学进步2,E1600694(2016)。10。Watson,T。F.等。 硅中可编程的两分量子处理器。 自然555,633(2018)。 11。 Zajac,D。M.等。 电子旋转的共同驱动的CNOT门。Watson,T。F.等。硅中可编程的两分量子处理器。自然555,633(2018)。11。Zajac,D。M.等。电子旋转的共同驱动的CNOT门。科学359,439(2018)。12。Yoneda,J。等。 一个量子点旋转量子置量量子,一致性限制了电荷噪声,而忠诚度则高于99.9%。 自然纳米技术13,102(2018)。 13。 Takeda,K。等。 在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。 NPJ量子信息4,1(2018)。 14。 Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Yoneda,J。等。一个量子点旋转量子置量量子,一致性限制了电荷噪声,而忠诚度则高于99.9%。自然纳米技术13,102(2018)。13。Takeda,K。等。 在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。 NPJ量子信息4,1(2018)。 14。 Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Takeda,K。等。在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。NPJ量子信息4,1(2018)。14。Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Huang,W。等。硅在硅中的两倍大门的保真基准。自然569,532(2019)。15。Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Zheng,G。等。使用芯片谐振器在硅中快速基于门的自旋读出。自然纳米技术14,742(2019)。16。Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Volk,C。等。通过高频累积门对Si/Sige量子点的快速电荷传感。Nano Letters 19,5628(2019)。
人工智能(AI)取得了长足的进步。在围棋和将棋的世界里,人类已经无法战胜AI。这股浪潮将进一步蔓延。学术界也不例外。AI有可能取代学者们一直在进行的研究。尤其是在我所研究的哲学领域,思考本身就是哲学的全部,因此哲学可能会遭遇与围棋和将棋相同的命运。让我们进一步思考这一点。首先,发现过去哲学家的思维模式是AI最擅长的。例如,可以让AI阅读哲学家康德的全集,从中发现类似康德的思维模式,并利用它们创建一个名为“人工智能康德”的应用程序。我预测,未来康德研究人员的工作将是向“人工智能康德”提出各种问题并分析其给出的答案。在这个领域,AI和哲学家可以建立愉快的合作关系。接下来,让AI读遍所有过去哲学家的著作,从中尽可能多地提取哲学思维模式,结果就是一系列人类能够思考的哲学思维模式。但是,肯定还有很多哲学思维模式是过去的哲学家们所忽略的,那么就让AI去发现这些未知的思维模式吧。结果就是一系列人类能够思考的哲学思维模式。一旦做到这一点,人类就无法再创造出新的哲学思维模式了。未来哲学家的工作将更接近于一种研究哲学AI行为的计算机科学。但是,这里出现了一个根本性的问题,这种哲学AI是在做真正的哲学工作吗?如果它所做的只是发现外部输入数据中未被发现的模式,或者为由* 教授,人文科学,早稻田大学,2-579-15 Mikajima,Tokorozawa,Saitama,359-1192 Japan 提出的问题提供解决方案。电子邮件:http://www.lifestudies.org/feedback.html
我的研究领域是信息的数学理论及其应用,特别是研究了通信、统计推断和密码学的数学理论。这些主题有不同的应用方面,并且由于历史原因而具有不同的社区。然而,这些主题具有共同的数学方面。因此,这些主题可以用共同的数学处理方式来处理。我根据共同的数学性质研究了这些主题。具体来说,我主要针对量子系统以及非量子(经典)系统研究这些主题。最近,我用这种方法研究了热力学的基础。最近,我主要在研究以下几点。一是基于群表示理论的量子信息处理的数学处理。群对称性通过消除基依赖性简化了量子系统中的许多问题。事实上,即使给定的信息处理问题由于问题的复杂性而需要进行困难的分析,群对称性也会通过降低复杂性来简化问题。利用群对称性,我们可以构建独立于基的通用协议。由于量子系统的群论方法尚未完成,因此需要进一步发展。第二是信息论保密的数学理论。最近,我为这个主题提出了几种方法,但是它们之间的关系不太清楚,还有一些问题尚未解决。因此,这个主题需要进一步研究。第三是量子理论的基础。虽然以前没有从信息论的角度研究过这个主题,但现在正在从操作的角度用信息论进行研究。我正在研究这个研究方向。
