自主机器人系统近年来引起了越来越多的关注,在这种环境中,环境是机器人导航,人类机器人互动和决策的关键步骤。现实世界机器人系统通常会从多个传感器中收集视觉数据,并经过重新识别以识别许多对象及其在复杂的人拥挤的设置中。传统的基准标记,依赖单个传感器和有限的对象类和场景,无法提供机器人对策划导航,互动和决策的需求的综合环境理解。作为JRDB数据集的扩展,我们揭开了一种新颖的开放世界式分割和跟踪基准,介绍了一种新型的开放世界式分割和跟踪基准。JRDB-Panotrack包括(1)各种数据室内和室外拥挤的场景,以及
○Harmonie – Arome基于Aladin联盟内开发的模型(地图上的蓝色国家)○○与AROME-FRANCE相同的非静态动力学核心○更新到该模型的物理参数化,配置选择和脚本系统●Accord common and contoct and contoct and contoct of ifs-arpege frr frrige and ifs-arpege M Moutrf,
土地覆盖和土地利用的监测和评估在自然资源管理中至关重要。遥感数据和图像处理技术已广泛应用于城市和农村地区的土地描述和变化检测。关于土地利用或土地覆盖的详细信息是各个领域的宝贵信息来源,例如城市规划[30,43]、变化检测[17]、植被监测[2],甚至军事侦察。土地覆盖变化是环境变化[38,37]、森林覆盖动态[32]和退化[21]的指标,也是生物多样性监测的方法之一[31]。此类数据可用于研究景观中发生的过程,例如各种土地覆盖之间的流动 [ 16 ],从而可以研究城市化、森林砍伐、农业强度和其他人为变化的速度。
图3。km存活曲线(顶部面板)和多元Coxph森林图(底部面板)说明了POL/POLD 1的左侧的RWPF(左侧RWPF,右侧RWOS)的结果(RWOS),用免疫疗法(IO)治疗的患者(IO)以及与化学疗法和IO + IO + IO + IO + IO + IO + IO(IO)组合的结局(左侧),并与IO + IO + IO(IO)组合进行了突变(基因(其他)。在KM图中指定了随着时间的流逝的中位生存时间和处于危险中的患者人数。森林图具有多元COXPH模型的危险比(HR),所有协变量(POL/POLD1突变,TMB,MSI状态和指示)的置信间隔为95%,表明相对的进展或死亡风险。
地球同步赤道轨道(GEO)是许多重要空间资产的所在地,例如远程通讯和导航卫星。GEO中监视居民空间对象(RSO)是实现空间情境意识(SSA)和保护批判空间资产的关键方面。然而,由于目标的极端距离以及包括云的缘故,大气/天气效应,光污染,传感器噪声/缺陷和恒星闭合,因此基于地面的地理对象进行了挑战。Kelvins Spotgeo挑战旨在确定来自低成本地面望远镜的图像在多大程度上可用于检测GEO和近Geo RSO,仅来自没有任何其他元数据的光度信号。同时,Spotgeo数据集还解决了有关卫星检测问题的计算机视觉观点中缺乏公开可用的数据集;通过组装和释放这样的数据集,我们希望在光学检测RSO上付出更多的努力,并为现有方法和将来的方法提供客观的台式标记。在这项工作中,我们介绍了Spotgeo数据集开发,Challenge设计,评估指标和结果分析的详细信息。
在 GridLab 的支持下,Catalyst Cooperative 将托管和分发可再生能源数据集。该数据包括按县级发布的每小时太阳能、陆上和海上风电生产情况,汇总了美国本土的 3 公里数据。首次发布包含 2019-2023 年的数据,而 2025 年第一季度的进一步发布将包含 2014-2018 年的数据。该数据集的基础是美国国家海洋和大气管理局的高分辨率快速刷新 (HRRR) 操作数值天气预报模型生成的天气变量。该方法已用于指导现实世界的进程,例如在 2020 年为 Midcontinent Independent System Operator (MISO) 开发数据集。
为了推进基于学习的融化算法的研究,已经开发了各种合成雾数据集。但是,现有的数据集使用大气散射模型(ASM)或十个实时渲染引擎而努力产生光真实的雾图像,以准确模仿实际的成像过程。这种限制阻碍了模型从合成到真实数据的有效概括。在本文中,我们引入了旨在生成照片现实的雾图图像的端到端模拟管道。该管道全面构建了整个基于物理的雾化场景成像,与现实世界图像捕获的方法紧密相位。基于此管道,我们提出了一个名为Synfog的新合成雾数据集,该数据集具有天空和主动照明条件以及三个级别的雾气状态。实验结果表明,与其他人相比,在与其他模型中相比,与其他人相比,在synfog上训练的模型在视觉感知和检测准确性方面表现出了较高的性能。
抽象能够将他人的活动映射到自己的观点中,即使从很小的时候就开始是一种基本的人类技能。迈向理解这种人类能力的一步,我们介绍了EgoExolearn,这是一个大规模的数据集,该数据集在过程之后模仿人类的演示,在该过程中,个人在执行以exentric-exentric-view示范视频为指导的任务时记录了以自我为中心的视频。关注日常援助和专业支持中的潜在应用,Egoexolearn Conconconconconconconconconconcons conconce concection和示范视频数据涵盖了在日常生活场景和专业实验室中捕获的120小时的120小时。与视频一起,我们记录了高质量的凝视数据并提供了详细的多模式注释,并构建了一个游乐场,用于建模人类从不同观点桥接异步程序动作的能力。为此,我们提出了基准,例如跨视图协会,跨视图行动计划和跨视图所引用的技能评估以及详细的分析。我们期望EgoExolearn可以作为跨越观点弥合行动的重要资源,从而为创建能够通过在现实世界中观察人类进行缝隙学习的AI代理铺平了道路。数据集和基准代码可在https://github.com/opengvlab/egoeexolearn上找到。
现代生活的几乎所有方面都取决于太空技术。多亏了计算机视频的一般和深度学习技术的巨大进步,几十年来,全世界都见证了将深度学习的发展用于解决太空问题的问题,例如自动驾驶机器人,诸如示踪剂,类似昆虫的机器人,类似昆虫的机器人和SpaceCraft的健康监测。这些只是一些在深度学习的帮助下具有高级空间行业的重要例子。但是,深度学习模型的成功需要大量的培训数据才能具有不错的性能,而另一方面,用于培训深度学习模型的公开空间数据集非常有限。当前没有用于基于太空的对象检测或实例分割的公共数据集,部分原因是手动注释对象分割掩码非常耗时,因为它们需要像素级标签,更不用说从空间获取图像的挑战了。在本文中,我们的目标是通过释放数据集以进行航天器检测,实例分割和零件识别来填补这一差距。这项工作的主要贡献是使用太空设置和卫星的图像开发数据集,并具有丰富的注释,包括绑定的航天器和口罩的框架盒对物体部分的水平,这些盒子是通过自动程序和手动努力的混合而获得的。我们还提供了对象检测和Intance Sementation的最新方法作为数据集的基准。可以在https://github.com/yurushia1998/satellitedataset上找到下载建议数据集的链接。
人类情感识别一直是心理物理学和计算机视觉的重要主题。但是,经常发布的数据集有许多局限性。进行检查,大多数数据集都包含仅包含有关面部表情的信息的框架。由于以前的数据集的局限性,很难理解影响人类识别的机制,或者在这些数据集中训练的计算机视觉模型上对人类的识别良好。在这项工作中,我们介绍了一个全新的大型数据集,基于视频的情感并影响上下文数据集(VEATIC)中的跟踪,可以征服先前数据集的限制。Veatic在好莱坞电影,纪录片和家庭视频中有124个视频片段,并通过实时注释进行了连续的价和唤醒评级。与数据集一起,我们采用了一项新的计算机视觉任务,以通过每个视频框架中的上下文和字符信息来推断所选字符的影响。此外,我们提出了一个简单的模型来基准这项新的计算机视觉任务。我们还使用数据集与其他类似数据集进行了预处理模型的性能。实验显示了通过VEATIC验证的模型的竞争结果,表明VEATIC的普遍性。我们的数据集可从https://veatic.github.io获得。