3D武器凝视是一个公共数据集,旨在从精确控制的,舒适的姿势到达宽的可触及空间中的物体时提供自然的手臂运动以及视觉和凝视信息。参与者参与了在虚拟环境中挑选和将物体放置在各种位置和方向上,从而使工作空间最大化了探索工作区,同时通过指导参与者通过躯干和肩部来确保参与者通过视觉反馈来确保一致的坐姿姿势。这些实验设置允许以高成功率(> 98%的物体)和最小的补偿性运动捕获自然手臂运动。数据集重组超过250万个样本,这些样本从20位健康参与者中记录,他们执行14,000个单次选拔运动(每位参与者700个)。最初旨在探索基于自然眼睛和手臂协调的新型假体控制策略,但该数据集也将对对核心感觉运动控制,人形机器人机器人,人类机器人相互作用以及在注视指导计算机视觉中相关解决方案的开发和测试的研究人员也很有用。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。是
Zhiqiang Sha 1✉2,Evdocia anagnosou 3,Celso Bolte 4,Guillaume Auzias 5,Marlene Behramann 12,13,Calvo 14,Calvo 14,Eileen Daly 15,Eileen Daly 15,Deneuth 5,Deneuth 5,Deneuth 5,Meiyu duan Duan Duan Duan Duan Duan Duan Duan Duan Duan Duan Duan Duan duan fitz in 31,Sarah Duris fitea forrise florothe l. jac selle l. Maria Jalbrzikowski 22,Joost Janssen 4,Joseph A.国王20 King 20,Luna 22,Sarah E. Medland 32,Filippo Muratori 12.13,Bob Orange 17,Parellada 4,Joseph C J. Taylor 40,Gregory L. Wallace 41,Jan K.King 20,Luna 22,Sarah E. Medland 32,Filippo Muratori 12.13,Bob Orange 17,Parellada 4,Joseph C J. Taylor 40,Gregory L. Wallace 41,Jan K.
了解神经系统的功能需要绘制其由功能,解剖学或基因表达定义的其组成细胞的空间分布。最近,组织制备和显微镜的发展使整个啮齿动物大脑都可以成像细胞种群。但是,手动映射这些神经元很容易偏见,并且通常不切实际。在这里,我们提出了一种开源算法,用于使用标准台式计算机硬件在鼠标全脑显微镜图像中完全自动化的3D检测神经元somata。我们通过绘制通过通过逆行反式突触病毒感染表达的细胞质荧光蛋白标记的大型细胞的大脑范围来证明我们方法的适用性和功能。
神经形态工程旨在通过模仿大脑的有效处理来推动计算,其中数据被编码为异步时间事件。这消除了对同步时钟的需求,并在不存在数据时最小化功耗。但是,神经形态算法的许多基准主要集中在空间特征上,忽略了大多数基于序列任务的时间动力学。此差距可能导致评估无法完全捕获神经形态系统的独特优势和特征。在本文中,我们提出了一种旨在基准神经形态学习系统的时间结构化数据集。Neuromorse将英语的前50个单词转换为暂时的摩尔斯密码峰序列。尽管仅使用两个输入尖峰通道来用于摩尔斯点和破折号,但通过数据中的时间模式对复杂的信息进行了编码。所提出的基准在多个时间尺度上包含特征层次结构,这些时间尺度测试了神经形态算法将输入模式分解为空间和时间层次结构的能力。我们证明,使用线性分类器对我们的训练集进行挑战,并且使用常规方法很难识别测试集中的关键字。NeuroMorse数据集可在10.5281/Zenodo.12702379上获得,我们的随附代码在https://github.com/jc427648/neuromorse上获得。
组合脑电图和fMRI允许整合精细的空间和准确的时间分辨率,但如果实时执行以实现神经反馈(NF)循环,则会引起许多挑战。在这里,我们描述了在运动成像NF任务中同时获得的脑电图和fMRI的多模式数据集,并补充了MRI结构数据。这项研究涉及30名健康志愿者接受五次培训。我们在以前的工作中展示了同时EEG-FMRI NF的潜力和优点。在这里,我们说明了可以从该数据集中提取的信息的类型并显示其潜在用途。这代表了NF的EEG和fMRI的第一个同时记录之一,在这里我们提出了第一个开放访问BI-MODAL模式NF数据集,该数据集整合了EEG和FMRI。我们认为,这将是(1)多模式数据集成的进步和测试方法,(2)提高所提供的NF质量,(3)改善在MRI下获得的EEG的方法论,并(4)使用多模式信息研究了运动象征的神经标志物。
大脑计算机界面(BCI)是处理大脑活动以从中解码特定命令的系统,例如在用户Image-Im-Ine运动时生成的运动成像模式。尽管对BCI的兴趣日益增加,但由于用户内部和内部的可变性,它们引起了重大挑战,尤其是在解码不同的神经模式方面。文献表明,各种预测因子与受试者的BCI绩效相关。在这些指标中,神经生理学的预测符似乎是最有效的,尽管研究通常涉及小样本,结果并未被复制,从而质疑其可靠性。在我们的研究中,我们使用了一个带有85位受试者的大型数据集来分析文献和BCI性能中确定的不同预测因子之间的关系。我们的发现表明,在此数据集中可以替换了测试的六个预测因子中的四个。这些结果强调了验证文献发现的必要性,以确保此类预测因子的可靠性和适用性。
分析人类运动是一个活跃的研究领域,具有各种应用。在这项工作中,我们使用机器人教练系统进行身体康复的背景下关注人类运动分析。计算机辅助评估的体育康复评估需要评估患者绩效,以完成基于用感官系统捕获的处理运动数据(例如RGB和RGB-D摄像机)完成规定的Reha-BiLitation练习。作为RGB图像的2D和3D人姿势估计取得了极大的改进,我们旨在使用从RGB-D摄像头(Microsoft Kinect)获得的运动数据和RGB视频(OpenPose和Blazepose算法)进行比较进行体育康复练习的评估。从位置(和方向)特征采用了高斯混合模型(GMM),其性能指标基于GMM的对数可能性值定义。评估是在临床患者的医学数据库上进行的,该数据库进行了较低的背痛康复运动,以前由机器人罂粟指导。
Abhishek khot 1 , Omkar Potadar 2 , Prof. Pavan Mitragotri 3 1, 2 Students, 3 Proffessor, Department of MCA, KLS Gogte Institute of Technology, Belagavi 590008 Abstract: Artificial Intelligence (AI) has become integral to cybersecurity, offering advanced solutions for monitoring, detecting, reporting, and countering cyber threats.随着网络攻击的数量和复杂性,传统的安全措施证明不足。AI快速适应和学习的能力使其成为防御这些不断发展的威胁的重要工具。它可以自动执行常规任务,加速威胁检测和响应,并提高安全措施的准确性。但是,AI还带来了风险,例如网络犯罪分子的潜在滥用,需要持续的人类监督。网络攻击的发生率的日益增强凸显了需要强大的AI支持网络安全系统来保护整个行业敏感数据的必要性。关键字:人工智能,网络安全,机器学习,深度学习,人工神经网络(ANN),智能代理(IAS),专家系统