地点:圣地亚哥。资格:熟悉ASIC/SOC设计流和方法论熟悉Verilog/System Verilog,Perl,Python。了解逻辑合成和数字设计。计算机体系结构概念的知识。固定点算术概念的知识。具有行业标准EDA工具的经验:综合和/或静态时序分析,LEC,覆盖。能够在具有迅速变化要求的动态环境中成为自我启动者。 Highly motivated, obsession with delivery quality and customer‐oriented Prior internship in ASIC/SoC related work is a plus Education Requirements Required: Bachelor's, Electrical Engineering, Science, or related fields Preferred: Master's, Electrical Engineering Keywords Linting, Spyglass, Verilog, System Verilog, Power Artist, DFT, DFD, Design‐for‐Test, Design‐for‐Debug, MBIST, ATPG,扫描,ATPG工具,RTL,验证,SOC,UVM,ASIC,SOC
SpaceWire 的主要优势之一是其复杂度低(因此门数少),并且可以轻松地在 ASIC 和 FPGA 中实现。SpaceWire 接口可以在大约 5000 到 8000 个逻辑门中实现。这使得可以在 FPGA 或 ASIC 上包含一个或多个 SpaceWire 接口以及应用逻辑或微型计算机。SpaceWire 使用数据选通编码,其中串行数据信号和选通信号通过两个差分对发送。选通信号的定义使得时钟恢复只需将数据和选通信号进行异或即可实现。无需锁相环,因此可以轻松地在任何数字 ASIC 或 FPGA 设备中实现 SpaceWire 接口。数据选通编码还具有良好的偏差容差。
测试、封装及故障分析、专用元器件生产线。该院已通过GJB9001B-2009质量体系认证、军工大规模集成电路生产线认证、军用标准二极管、三极管生产线认证、安全健康体系认证、环境保护体系认证。该研究所是航天微电子技术领域的主要研究所,专注于单片集成电路、微系统及模块生产,半导体分立器件开发,微处理器(CPU)、片上系统(SoC)、现场可编程逻辑集成电路(FPGA)、存储器件(SRAM/PROM)、模数/数模转换器(ADC/DAC)、总线电路、接口及驱动电路、逻辑电路、射频及微波电路、电源管理芯片、专用集成电路(ASIC)、分立器件、导航芯片组、二极管\三极管的设计
测试、封装和故障分析,专用组件的生产线。该院已通过GJB9001B-2009质量体系认证、军工大规模集成电路生产线认证电路图、军工标准二极管、三极管生产线认证、健康安全体系认证、环境保护体系认证。该研究所是航天微电子技术领域的主要机构,专注于单片集成电路、微系统和模块的生产,半导体分立器件的开发,微处理器(CPU)的设计,片上系统( SoC)、现场可编程逻辑集成电路(FPGA)、存储器件(SRAM/PROM)、模数/数模转换器(ADC/DAC)、总线电路、接口及驱动电路、逻辑电路、RF和微波电路、电源管理芯片、专用集成电路(ASIC)、分立器件、导航芯片组、二极管\u0442riodes
首先,传感元件的差分电压信号通过多路复用器和放大器模块传输到 A/D 转换器模块 (ADC),在那里将其转换为具有 18 位分辨率的数字信号。然后,该数字化信号由 ASIC 的集成微控制器单元 (μC) 进行数学处理,以获得经过校准和温度补偿的输出信号。为此,μC 使用校正算法和单独的校正系数,这些校正系数在 AMS 5935 的工厂校准期间存储在 ASIC 的内存中。这可以对数字化压力信号进行传感器特定的校准和校正(即线性化和温度补偿)。温度补偿所需的温度信号在 ASIC 的温度参考模块中生成,并通过多路复用器传输到放大器,然后传输到 ADC,在那里它也被数字化。使用其校正算法,微控制器计算当前校正和标准化的压力和温度测量数据(24 位压力值和 24 位温度值),这些数据被写入 ASIC 的输出寄存器。可以通过传感器的数字 I 2 C / SPI 接口从输出寄存器读取压力和温度的标准化数字输出值。对于 I²C 通信,使用 PIN3 (SDA) 和 PIN4 (SCL),对于 SPI 通信,使用 PIN3 (MOSI)、PIN4 (SCLK)、PIN6 (MISO) 和 PIN8 (SS)。AMS 5935 的数字输出值(压力和温度)与电源电压不成比例。
摘要:ALTIROC2 是一款 225 通道 ASIC,采用 CMOS 130 nm 设计,用于读取 ATLAS HGTD(高粒度定时探测器)的 15 x 15 矩阵 1.3 mm x 1.3 mm 低增益雪崩二极管 (LGAD)。传感器及其读出电子设备的目标组合时间分辨率为 35 ps/hit(初始)至 65 ps/hit(工作寿命结束)。每个 ASIC 通道都集成了一个高速前置放大器,后接一个高速鉴别器和两个 TDC,用于到达时间和超阈值时间测量以及本地存储器。该前端必须表现出极低的抖动噪声,同时保持每通道低于 4.5 mW 的功耗。本会议论文总结了 ASIC 架构、与模拟相比的测量性能以及 ATLAS HGTD 实验的要求。
测试、封装及故障分析、专用元器件生产线。该院已通过GJB9001B-2009质量体系认证、军工大规模集成电路生产线认证、军用标准二极管、三极管生产线认证、安全健康体系认证、环境保护体系认证。该研究所是航天微电子技术领域的主要研究所,专注于单片集成电路、微系统及模块生产,半导体分立器件开发,微处理器(CPU)、片上系统(SoC)、现场可编程逻辑集成电路(FPGA)、存储器件(SRAM/PROM)、模数/数模转换器(ADC/DAC)、总线电路、接口及驱动电路、逻辑电路、射频及微波电路、电源管理芯片、专用集成电路(ASIC)、分立器件、导航芯片组、二极管\三极管的设计
测试、封装及故障分析、专用元器件生产线。该院已通过GJB9001B-2009质量体系认证、军工大规模集成电路生产线认证、军用标准二极管、三极管生产线认证、安全健康体系认证、环境保护体系认证。该研究所是航天微电子技术领域的主要研究所,专注于单片集成电路、微系统及模块生产,半导体分立器件开发,微处理器(CPU)、片上系统(SoC)、现场可编程逻辑集成电路(FPGA)、存储器件(SRAM/PROM)、模数/数模转换器(ADC/DAC)、总线电路、接口及驱动电路、逻辑电路、射频及微波电路、电源管理芯片、专用集成电路(ASIC)、分立器件、导航芯片组、二极管\三极管的设计
为了充分发挥量子计算机的潜力,必须谨慎管理噪声对量子比特性能的影响。负责诊断噪声引起的计算错误的解码器必须高效利用资源,以便扩展到大量子比特数和低温操作。此外,它们必须快速运行,以避免量子计算机的逻辑时钟速率呈指数级下降。为了克服这些挑战,我们引入了碰撞聚类解码器,并在 FPGA 和 ASIC 硬件上实现它。我们使用领先的量子纠错方案表面代码模拟逻辑内存实验,并展示 MHz 解码速度——符合超导量子比特等快速操作模式的要求——FPGA 和 ASIC 分别高达 881 和 1057 个量子比特表面代码。ASIC 设计占用 0.06mm2,仅消耗 8mW 功率。我们的解码器性能高,资源高效,为实际实现容错量子计算机开辟了一条可行的途径。
机器学习和人工智能 公司三个机器学习 (ML) 小组中的两个小组在开发公司前两种基于知识的算法(在公司 2022 年 5 月 23 日的 RNS 中描述为方法“A”和方法“B”)方面取得了首批成果,这些成果涉及用于 BTC 挖矿的原型专有软件加速器,目前已准备好进行密集测试。通过在当前 BTC 提取难度级别下进行测试来验证方法 A 和方法 B 的计算要求非常具有挑战性。公司并未排除使用超级计算机进行此类测试的可能性,但短期内更务实的方法是基于使用现有的市场可用 ASIC 矿机。公司已经收购了一些 ASIC 矿机,目的是用 QBT 自己的基于方法 B 的专有软件取代 ASIC 矿机上的控制软件。公司将收购更多矿机,以测试方法 A 和方法 B 在当前挖矿难度下的性能。到目前为止,基于两种不同的组合 ML 方法的方法 B 已经取得了有趣的初步实验室结果,表明与现有的基于 ASIC 芯片的商用 BTC 矿机相比,其统计性能提高了 30%。也就是说,无论矿机使用的 ASIC 芯片的性能如何,公司的专有软件在统计上仍可将挖矿速度提高 30%,同时不会影响矿机的功耗。如果方法“A”和/或方法“B”算法的性能得到确认,目标是在现有的商用矿机上运行它们,以提高其性能,如上所述,方法是用 QBT 自己的控制软件替换原生控制软件。根据目前的测试数据,我们预计挖矿设备的整体性能将立即得到改善,而无需任何额外的硬件投资。为了确保这种方法的成功,公司还在努力修改矿机操作系统的控制软件。