抽象的支原体溶质膜是猪中enzootic肺炎的主要药物。尽管细胞介导的免疫性(CMI)可能在防御hyopneumoniae的保护中发挥作用,但其从母猪转移到后代的特征很差。因此,在疫苗接种和未接种疫苗的母猪中研究了母体衍生的CMI。还研究了摄入初乳之前的交叉促进对CMI从大坝转移到小猪的转移的潜在影响。六二肠疾病中的hyopneumoniae接种了被人体感染的牛群和47头仔猪,其中24个小猪被交叉寄养,以及三只非疫苗的对照母猪,来自M. hiopneumoniae M. hyopneumoniae-free Herd-free Herd seal-free Herd和24个小猪。疫苗接种的母猪在肌内肌肉内接受了商业细菌,并在for染前6周和3周接受。使用召回测定法评估了不同T细胞子集的TNF-α,IFN-γ和IL-17A的产生。在母猪血液中的细胞因子产生T细胞增加。同样,在这些疫苗接种的母猪中出生的2天大的小猪的血液中检测到了脑性的 - 特异性T细胞。相比之下,在对照母猪的仔猪血液中没有发现脑性的 - 特异性细胞因子产生T细胞。在交叉派生和非交叉式仔猪之间的透明杆菌特异性CMI中没有发现差异。总而言之,不同的Hyopneumoniae M.特异性T细胞子组从母猪转移到后代。需要进一步的研究来研究这些跨性别细胞对小猪中免疫反应的作用及其对透明杆菌感染的潜在保护作用。关键词:支原体溶液,母体免疫,细胞介导的免疫,交叉促进
DNA 链之间的相互作用是细胞中许多基本过程的关键。DNA 寡核苷酸之间的杂交对于我们最灵敏的 DNA 检测方法至关重要,包括最先进的单分子技术。1–3 单分子技术通过提供有关生物反应和生理过程动力学的细节,丰富了生物分子研究,而这些细节在相应的批量测量中并不明显。在过去的几十年里,出现了强大的单分子传感和成像新方法。一个例子是基于荧光的单分子成像,它通过从高精度时间调制和单分子检测事件的积累中重建图像来克服衍射极限。4–7 其中,光激活定位显微镜
Apelin 是一种生物活性肽,也是 G 蛋白偶联受体 APJ 的内源性配体。它在多种器官和组织中表达,包括中枢神经系统和胃肠道的许多区域、心脏、肺和脂肪组织。Apelin/APJ 系统发挥多种生理作用,包括调节能量代谢、液体稳态以及心血管、胃肠道和免疫功能 (1)。啮齿动物研究表明,Apelin 具有胰岛素增敏作用,并对葡萄糖稳态发挥有益作用 (1)。根据已知的生理作用,可以预期 Apelin 可能具有预防糖尿病的作用。然而,缺乏大规模前瞻性研究的数据来探讨 Apelin 与普通人群糖尿病风险之间的关系。因此,我们在 DESIR(胰岛素抵抗综合征流行病学研究小组)的 3,785 名参与者中,对基线血浆阿扑素浓度与 2 型糖尿病发病率及相关特征进行了 9 年随访,评估了两者之间的关联。
低温等离子体 (LTP) 是一种密度和能量相对较低的等离子体(通常小于 10 eV),在微加工、光源和其他成熟工业应用的技术进步中发挥着关键作用。LTP 具有多功能性和相对较低的技术开发资本成本,为技术创新和寻找气候变化解决方案提供了无数机会。展示这些基于 LTP 技术发展的研究活动分为四个领域:可再生能源、清洁环境、智能农业和更健康,这些研究均取自 LTP 社区并在此进行讨论。
由 HBr/O 2 组成的等离子体通常用于硅蚀刻工艺,如栅极蚀刻工艺或浅沟槽隔离蚀刻,由于人们对此类化学反应中的硅蚀刻相当了解,因此它成为研究等离子体脉冲对气相和等离子体-表面相互作用的影响的最佳选择。目标是了解连续等离子体和脉冲等离子体之间的根本区别,以及等离子体产生的变化如何影响最终的图案转移。在论文 I 中,我们展示了等离子体脉冲对离子通量和离子能量的强大影响。1 结果显示,占空比 (dc) 而不是脉冲频率对这些参数有显著影响。在本文中,我们重点研究等离子体脉冲对 HBr/O 2 等离子体中的蚀刻机制和图案转移的影响。先前的实验已经证明脉冲等离子体中等离子体引起的损伤有所减少,2 – 4 通常通过使用扫描电子显微镜 (SEM) 成像、椭圆偏振测量和 X 射线光电子能谱 (XPS) 对侧壁钝化层 (SPL) 进行形貌分析。许多作者已经研究了 HBr/O 2 等离子体对硅和 SiO 2 的蚀刻机理。5 – 13 下面总结了 Si 和 SiO 2 蚀刻的基本机理,其中考虑了原料气中极小比例的氧气。含溴、氢和(较少量)氧的离子撞击硅表面、分解、破坏键并形成富含卤素的非晶层,也称为反应蚀刻层 (REL),其中含有 H、Br 和一些 O 原子。非晶层的厚度和成分会根据离子能量、压力和原料气流量而变化。由于氢原子比其他粒子小得多,它们可以更深地渗透到硅层中,然后硅原子可以因碰撞而解吸,或可以融入挥发性物质,如 SiBr 4。含氢分子如 SiH 2 Br 2 的挥发性更强,13 但硅蚀刻并不
我们的组织致力于保护我们星球的环境遗产,并促进人们的身体和精神锻炼。我们是由与农业学生,工程师和经济学家等团体关注的部门直接接触的学生组成的。共同行动,使我们能够尽可能最好地传播诸如公民在社区问题上的可持续发展,回收利用和现代立场,从他们自己的角度看待未来,纯粹是农业或作为工程师,在这个星球上如何帮助现代国家在这一进化中如何经济地站立。以及所有这些都参加了志愿者计划,体育比赛,心身健康和环境的行动,以便我们可以最好地体现我们的“理想”现代公民。法律代表名称Georgios姓氏(姓氏)MpiPilis性别男性电话号码+306988260578电子邮件georgebirp30@gmail.com联系人,联系人名为Apostolos姓氏(family name)Trachilis trachilis trachilis trachilis性别男性电话号码
牛边形体病主要由 Anaplasma marginale 引起,对牛健康和畜牧业构成重大挑战。该领域的研究已发展到解决该疾病的各个方面,包括其病因、流行病学、诊断、治疗、预防和社会经济影响。在理解、诊断、治疗和预防牛边形体病方面取得的最新进展有助于改善管理实践。尽管该领域的研究取得了进展,但仍有一些关键领域需要采取行动。对于本期特刊,我们欢迎原创文章、评论论文和通讯的投稿,这将有助于增进对该疾病的理解、预防和控制,特别是在疫苗开发、了解发病机制、诊断改进和媒介控制策略方面。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 29 日发布。;https://doi.org/10.1101/2025.01.29.635600 doi:bioRxiv 预印本
等离子技术已成为工业应用的一部分,可替代或与标准技术竞争。由于新的等离子源和新技术的出现,等离子技术的潜力正在不断扩大。这为这些技术开辟了未来应用的新领域。成功的应用包括在高温下工作的自适应摩擦学涂层或聚合物基纳米颗粒的表面处理。另一个有趣的领域是混合技术。在这种情况下,等离子技术可以补充或促进已建立方法的应用。本期特刊将包括具有工业用途潜力的基础研究知识以及可应用于现有工业技术的知识。我们将重点关注以下专业主题: - 等离子和离子表面工程 - 与水和冰接触的涂层 - 自适应摩擦学涂层 - 柔性涂层 - 生物医学和生物应用 - 等离子体中的颗粒和粉末 - 等离子处理、等离子清洗 - 等离子体-表面相互作用
虽然单克隆抗体(mAb)是一类重要的药品类别,但成本,复杂性,尤其是递送仍然存在重大问题:克服经常注入抗体的概念是一个值得的目标。一种有吸引力的方法是将非整合DNA直接传递给肌肉组织,使患者充当自己所谓的“蛋白质工厂”。使用脂质纳米颗粒(LNP)和病毒载体进行了这种概念的演示,但是这些传递方法面临着重大挑战,包括肝外交付不良,货物兼容性,安全性,可重复性和成本。聚合物纳米颗粒(PNP)提供了解决这些问题的解决方案,但是面临着自己的挑战,例如大量可能的聚合物结构和多体式配方条件。然而,机器学习,材料信息学和高通量化学合成技术的进步为解决这些挑战提供了有效探索聚合物设计空间的基础。我们的Sayer TM平台利用了质粒DNA(PDNA)的大量计算数据集 - 聚合物相互作用来促进靶向剂的发现和通过深度学习的发现,并推动对各种靶向组织的新型PNP的发现。在这项工作中,我们证明了设计PNP的能力,可以为PGT121提供PDNA编码,PGT121是一种广泛中和的抗HIV抗体,该抗体靶向HIV-1 Invelope糖蛋白上的V3 GlyCan依赖性表位位点。Sayer设计的聚合物与PGT121质粒形成小稳定的PNP。此外,我们表明我们可以通过延长来提高抗体水平和耐用性。与其他状态的DNA降低车辆相比,转染后1天,在转染后1天表现出强血清PGT121蛋白水平。更重要的是,纳米PNP的肌内递送启用了大于1.0 µg/ml峰蛋白表达水平,注射后> 56天,有意义的,耐用的表达水平。在肌肉内输送PNP时,可以看到较低剂量和较低的N/P比的一般趋势。这些参数与聚合物结构分开,提供了不同的机制,可以使用机器学习技术优化体内递送性能。可以将概念扩展到其他抗体,蛋白质或酶的连续产生,这表明PDNA通过PNPS作为治疗方式具有广泛的适用性。最后,我们强调,通过安全有效的PNP在体内提供DNA编码的分泌蛋白的策略可能适用于广泛的其他疾病方式。