结果:我们使用我们专有物理学的自由能扰动(FEP+)建模技术确定了新型的小分子MALT1抑制剂。我们的化合物显示出对MALT1酶活性的有效抑制(亚NM),以及通过表面等离子体共振(SPR)测量的MALT1蛋白的高结合亲和力(sub nm)。bcl10是MALT1的结合伙伴,在C端在C端裂解。Our inhibitors were efficacious in a target engagement assay showing prevention of BCL10 cleavage in Activated B-cell (ABC) subtype of diffuse large B cell lymphoma (DLBCL) cell lines OCI-LY3 and OCI-LY10, which are Bruton tyrosine kinase (BTK) inhibitor ibrutinib-resistant and -responsive respectively.我们的化合物是OCI-LY3和OCI-LY10细胞中IL10分泌的有效抑制剂,这与NF-κB信号传导的抑制一致。我们还检查了MALT1抑制剂对ABC-DLBCL细胞增殖的影响。我们的抑制剂在OCI-LY3和OCI-LY10细胞系中都表现出有效的抗增殖作用,以及在BTKI敏感的ABC-DLBCL细胞图中与ibrutinib的协同作用。检查蛋白酶面板和脱靶安全筛选面板以及体内高剂量耐受性研究表明,我们的化合物具有出色的选择性和明显的安全余量。等离子体IL10和肿瘤BCL10在PK/PD研究中已被鉴定为可靠的PD标记。剂量依赖性肿瘤生长抑制作用,还观察到与Venetoclax结合使用的功效。
和一个锅的不同)或意图(例如通过刀与使用它进行切割),我们人类可以毫不费力地描绘出与日常生活中日常物体的这种互动。在这项工作中,我们的目标是构建一个可以同样生成合理的手动配置的计算系统。具体来说,我们学习了一个基于扩散的常规模型,该模型捕获了3D相互作用期间手和对象的关节分布。给定一个类别的描述,例如“握着板的手”,我们的生成模型可以合成人手的相对配置和表达(见图1个顶部)。我们解决的一个关键问题是,该模型是什么好的HOI表示。通常通过空间(签名)距离场来描述对象形状,但人的手通常是通过由发音变量控制的参数网格建模的。我们提出了一个均匀的HOI表示,而不是在生成模型中对这些不同的代表进行建模,并表明这允许学习一个共同生成手和对象的3D扩散模型。除了能够合成各种合理的手和物体形状的综合外,我们的扩散模型还可以在跨任务的辅助推理之前作为通用,而这种表示是所需的输出。例如,重建或预测相互作用的问题对于旨在向人类学习的机器人或试图帮助他们的虚拟助手来说是核心重要性。重建的视频重新投影错误)或约束(例如我们考虑了这些行沿着这些行的两个经过深入研究的任务:i)从日常交互剪辑中重建3D手对象形状,ii)鉴于任意对象网格,合成了合理的人类grasps。为了利用学到的生成模型作为推论的先验,我们注意到我们的扩散模型允许在任何手动对象配置给定的(近似)log-likelihood梯度计算(近似)log-likelihoodhoodhood。我们将其纳入优化框架中,该框架结合了先前的基于可能性的指南与特定于任务的目标(例如已知对象网格的合成)推理。虽然理解手动相互作用是一个非常流行的研究领域,但现实世界中的数据集限制了3D中这种相互作用的限制仍然很少。因此,我们汇总了7种不同的现实世界交互数据集,从而导致157个对象类别的相互作用长期收集,并在这些范围内训练共享模型。据我们所知,我们的工作代表了第一个可以共同生成手和对象的生成模型,并且我们表明它允许综合跨类别的各种手动相互作用。此外,我们还经验评估了基于视频的重建和人类掌握合成的任务的先前指导的推断,并发现我们所学的先验可以帮助完成这两个任务,甚至可以改善特定于特定于任务的状态方法。
背景:低级别浆液性卵巢和腹膜癌 (LGSC) 是一种罕见疾病,关于其临床和基因组学状况的数据很少。方法:对 1996 年至 2019 年期间在 MITO 中心确诊为 LGSC 的患者进行了回顾性分析。评估了治疗后的客观缓解率 (ORR)、无进展生存期 (PFS) 和总生存期 (OS)。此外,使用下一代测序 (NGS) FoundationOne CDX (Foundation Medicine®) 评估了 56 例患者的肿瘤分子谱。结果:共确定 128 名具有完整临床资料且病理确诊为 LGSC 的患者。首次和后续治疗的 ORR 分别为 23.7% 和 33.7%。 PFS 为 43.9 个月(95% CI:32.4 – 53.1),OS 为 105.4 个月(95% CI:82.7 – 未达到)。最常见的基因变异是:KRAS(n = 12,21%)、CDKN2A/B(n = 11,20%)、NRAS(n = 8,14%)、FANCA(n = 8,14%)、NF1(n = 7,13%)和 BRAF(n = 6,11%)。意外的是,发现了致病性 BRCA1(n = 2,4%)、BRCA2(n = 1,2%)和 PALB2(n = 1,2%)突变。结论:MITO 22 表明 LGSC 是一种异质性疾病,其临床行为对标准疗法有反应,其分子改变也不同。未来的前瞻性研究应根据肿瘤的生物学和分子特征测试治疗方法。临床试验注册:本研究在 ClinicalTrials.gov 上注册号为 NCT02408536。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
根据《通货膨胀削减法》第 60503 和 60506 条的规定,美国环境保护署 (EPA) 被指示确定“与类似材料或产品的估计行业平均水平相比,在所有相关生产、使用和处置阶段中温室气体排放量显著降低的材料和产品”。2022 年 12 月 22 日,EPA 发布了《IRA 60503 和 60506 下的低碳材料临时裁定》。FEMA 决定采用 EPA 临时裁定中定义和描述的修改版本。这些定义和描述可能会根据 EPA 发布的指导进一步修改,以满足 FEMA 的需求、使命和现有权限。有关为实施 IRA 第 70006(1) 条而制定的低碳材料定义和描述的更多信息,请参阅定义部分:EPA 2022 年 12 月 22 日临时裁定函。
请注意,本文计划在 ICTALS 2022 特别版中发表。致谢:我们感谢伯尔尼大学、Inselspital、伯尔尼大学医院、癫痫研究联盟、瑞士国家科学基金会 (SNF)、UCB、FHC、Wyss 生物和神经工程中心、美国癫痫协会 (AES)、CURE 癫痫基金会、Ripple neuro、Sintetica、DIXI medical、UNEEG medical 和 NeuroPace 通过无限制的教育捐款为伯尔尼 ICTALS 2022 会议提供慷慨赞助。AR 和 KS 感谢 SNF 拨款 200800 的支持。CR 感谢 SNF 通过拨款 204593 提供的支持。EBA 感谢数据价值研究所 (IVADO, 51627) 和蒙特利尔大学医院研究中心 (CRCHUM, 51616) 的资金支持。利益冲突:Elie Bou Assi、Kaspar Schindler、Christophe de Bézenac、Simon S. Keller、Émile Lemoine、Abbas Rahimi、Mahsa Shoaran 和 Christian Rummel 没有利益冲突需要披露。
多倍体在禾本科植物中很常见,对传统育种提出了挑战。基因组编辑技术绕过了杂交和自交,能够在一代中对多个基因拷贝进行有针对性的修改,同时保持许多多倍体基因组的杂合背景。巴哈草(Paspalum notatum Flügge ́;2 n =4 x =40)是一种无融合生殖的四倍体 C4 物种,在美国东南部广泛种植,作为肉牛生产和公用事业草坪的饲料。叶绿素生物合成基因镁螯合酶(MgCh)被选为在四倍体巴哈草中建立基因组编辑的快速读出目标。含有 sgRNA、Cas9 和 npt II 的载体通过基因枪法递送到愈伤组织培养物中。通过基于 PCR 的检测和 DNA 测序对编辑植物进行了表征,并观察到高达 99% 的 Illumina 读数的诱变频率。野生型 (WT) 巴哈草的测序显示,MgCh 的序列变异水平很高,这可能是因为存在至少两个拷贝,可能包含八种不同的等位基因,包括假基因。MgCh 突变体表现出明显的叶绿素消耗,叶片绿度降低了 82%。两种品系显示出随时间推移的编辑进展,这与体细胞编辑有关。获得了嵌合 MgCh 编辑事件的无融合生殖后代,并允许在一系列叶绿素消耗表型中识别出统一编辑的后代植物。高度编辑的突变体的 Sanger 测序显示 WT 等位基因的频率升高,可能是由于频繁的同源定向修复 (HDR)。据我们所知,这些实验是首次报道将基因组编辑应用于多年生暖季草皮或牧草。该技术将加速巴哈草品种的开发。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
指导CES实施的中心原则是系统将需要收回其成本以长期确保可持续性。网格系统将为项目和开发带来巨大的成本(例如,开发现场报告,可行性和影响研究,财务成本,监管成本,土地购买)和运营成本(用于运营,维护和管理)。像Ceset这样的小型项目可能会从资本投资开始,以支付建立成本。但是,成本回收应与更大的投资一起支持运行成本,这可能需要确保项目的连续性。费用将获得连接费和电力销售以及可用补贴的收入。无论如何,确保可靠且持续的收入来源对于维护项目至关重要。