● 通过消除健康保险障碍并允许药剂师提供紧急处方续药,增加获得药物辅助治疗 (MAT) 的机会。 ● 将福利保留时间从 48 小时更新为 72 小时,以应对芬太尼。 ● 扩大认证行为健康诊所,为有心理健康和药物使用需求的俄勒冈人提供治疗,并改善护理协调。 ● 通过将 CCO 网络充分性标准应用于成瘾治疗提供者,确保全州范围内提供一致、高质量的护理。 ● 通过研究如何减少认证障碍,建立药物治疗和心理健康劳动力队伍。 ● 启动预防和治疗青少年吸毒成瘾的战略计划。 ● 与区域行为健康问责工作组一起改善俄勒冈州的治疗系统。 ● 通过恢复 Boyd 送货服务并加重针对居住在收容所、康复中的人和公园里的人的毒贩的刑罚来阻止更多的毒贩。 ● 干预公共药物使用,并通过转移计划让俄勒冈人接受治疗。 [ 有关新的未分类轻罪的更多信息 ] ● 通过数据收集和立法审查来监控执法互动中是否存在种族和其他人口统计差异。
我们提出了一个新的机器学习基准,用于阅读任务分类,目的是在计算语言处理与认知神经科学之间的相交中推进脑电图和眼睛追踪研究。基准任务由一个跨主体分类组成,以区分两个阅读范式:正常阅读和特定于任务的读数。基准的数据基于苏黎世的认知语言处理语料库(ZUCO 2.0),该语料库提供了同时引人注目的视线和来自英语句子的自然阅读的EEG信号。培训数据集已公开可用,我们提出了新记录的隐藏测试集。我们为此任务提供多种可靠的基线方法,并讨论未来的改进。我们发布代码,并提供易于使用的界面,以使用随附的公共排行榜:www.zuco-benchmark.com评估新方法。
回顾该学科的创立历史,大约从 1900 年到 1930 年代中期,涉及数十位物理学家甚至一些数学家的工作,涉及许多实验和观察,以及许多错误的开始和停止,我们将微积分呈现为既成事实,然后回溯以填补我们的理解。不过,读者一开始就应该明白,这种微积分有大量的实验依据。在这个开场讲座中,我们通过一个例子对比了经典力学和量子力学。这个例子清楚地说明了牛顿定律所表达的经典世界观与量子力学规则所表达的现代世界观之间的差异。谐振子是典型的物理系统,因此,对它的分析,无论是经典的还是量子的,都是该学科的原型。在本讲座中,我们将回顾谐振子的经典处理,并概述量子处理。量子处理似乎是临时的、没有动机的,应该会引起一些不安,甚至困惑。读者会看到,经典处理的方法和结果的极端简单性与量子处理的复杂性形成鲜明对比。事实上,虽然经典处理的应用和含义从数学本身就很明显,但量子处理的方法和结果却需要解释和阐释。我们在这里给出了量子处理的标准解释,但读者会发现,我们的解释虽然内部连贯,但却没有动机。这种解释是在数年的时间里与量子力学机制本身的发展同时发展起来的,但读者应该知道其他解释也是可能的。在本讲座的最后,我们将深入探讨一些围绕量子力学解释的基础问题。这与我们在本书中的其余部分的做法有所不同,在其余部分中,形式主义的发展优先于哲学问题。1 尽管如此,我们希望读者从一开始就意识到,量子力学的世界观与经典的世界观截然不同,留下了许多深刻的哲学问题。欢迎来到量子世界!
能源弹性是能源政策和研究的重要焦点,因为能源系统正面临越来越多的挑战,例如由于可再生能源生产增加而导致的电力短缺,以及极端天气导致的停电风险。通常,在这些情况下,能源弹性侧重于基础设施和确保电力供应不受干扰。本文提出了一个关于弹性的补充观点,以家庭为研究弹性的起点。基于对多个学科弹性的理解,我们提出了家庭能源弹性的定义,可用于探索家庭如何在电力供应不稳定的情况下确保未来生活良好。此外,我们借鉴了能源富裕环境下未来家庭能源使用的当前想法(备用能源、能源效率、灵活性和能源自给自足),以创建一个探索家庭能源弹性的框架。我们发现不同想法之间存在多样性的潜力,而这种多样性并不总是存在于主流的未来能源使用愿景中。从家庭能源弹性的角度来看,我们希望挑战电力需求不可协商的观念,并揭示支持家庭在不确定的未来变得更具弹性的机会。
1 约翰霍普金斯应用物理实验室,空间探索部门,马里兰州劳雷尔 20723,美国; Ian.Cohen@jhuapl.edu 2 SETI 研究所,美国加利福尼亚州山景城 94043 3 美国国家航空航天局艾姆斯研究中心,空间科学和天体生物学部,美国加利福尼亚州山景城 94043 4 爱达荷大学物理系,美国爱达荷州莫斯科 83844 5 现就职于罗彻斯特理工学院,Chester F. Carlson 成像科学中心,美国纽约州罗彻斯特 14623 6 美国国家航空航天局戈达德太空飞行中心,科学与探索理事会,美国马里兰州格林贝尔特 20771 7 汉普顿大学,大气与行星科学系,美国弗吉尼亚州汉普顿 23668 8 德克萨斯大学奥斯汀分校,地球物理研究所,美国德克萨斯州奥斯汀 78758 9 兰开斯特大学物理系,英国兰开斯特 LA1 4YW 10 加州理工学院喷气推进实验室,帕萨迪纳,CA 91109,美国 11 莱斯特大学物理与天文学院,莱斯特,LE1 7RH,英国 12 巴黎大学/巴黎环球物理研究所,宇宙化学、天体物理学和实验地球物理学系,F-75005 巴黎,法国 13 法国国家科学研究中心 ( CNRS ) / 空间研究和天体物理仪器实验室 ( LESIA ) / 巴黎-默东天文台,F-92190 默东,法国 14 美国国家航空航天局兰利研究中心,汉普顿,VA 23666,美国 15 内布拉斯加大学 - 林肯分校,物理与天文系,林肯,NE 68588,美国 16 苏黎世大学,理论天体物理与宇宙学中心,计算科学研究所,190 CH-8057 瑞士苏黎世 17 利物浦大学地球、海洋与生态科学系,利物浦,L69 3BX,英国 18 东北大学行星等离子体与大气研究中心,青叶,仙台,宫城 980-8578,日本 19 美国自然历史博物馆天体物理学系,纽约,NY 10024,美国 20 哥伦比亚大学天文学系,纽约,NY 10027,美国 21 艾克斯-马赛大学马赛天体物理实验室,F-13013 马赛,法国 22 意大利国家天体物理研究所 ( INAF ) / 空间天体与行星研究所 ( IAPS ),I-00133,罗马,罗马,意大利 23日本宇宙航空研究开发机构宇宙航行科学系,日本神奈川县相模原市 252-5210 24 约翰霍普金斯大学 Morton K. Blaustein 地球与行星科学系,美国马里兰州巴尔的摩 21218 25 德国航空航天中心 (DLR),行星研究所,德国柏林 Rutherfordstrasse 2, D-12489 26 加州大学伯克利分校天文系,美国加利福尼亚州伯克利市 94720 27 伯尔尼大学空间探索与行星部门,Hochschulstrasse 6, 3012 伯尔尼,瑞士 收到日期 2021 年 10 月 21 日;修订日期 2022 年 1 月 27 日;接受日期 2022 年 1 月 31 日;发布日期 2022 年 3 月 8 日
将几何模型拟合到离群污染数据上是可证明的难点。许多计算机视觉系统依靠随机抽样启发式方法来解决稳健拟合问题,但这种方法不提供最优性保证和误差界限。因此,开发新方法来弥合成本高昂的精确解决方案与无法提供质量保证的快速启发式方法之间的差距至关重要。在本文中,我们提出了一种用于稳健拟合的混合量子经典算法。我们的核心贡献是一种新颖的稳健拟合公式,它可以解决一系列整数程序并以全局解或误差界限终止。组合子问题适合量子退火器,这有助于有效地收紧界限。虽然我们对量子计算的使用并没有克服稳健拟合的根本难点,但通过提供误差界限,我们的算法是对随机启发式算法的实际改进。此外,我们的工作代表了量子计算在计算机视觉中的具体应用。我们展示了使用实际量子计算机(D-Wave Advantage)和通过模拟 1 获得的结果。
CFDE 为教师职业生涯的各个方面提供支持:研究和学术、教学和教学法以及专业发展。CFDE 提供一对一咨询以及各种主题的研讨会、讲习班、演讲、资助机会和在线资源,包括教学和教学法;在线学习;研究、写作和出版;社区参与式学习;以及专业发展。
输入-处理-输出 计算机是一台机器。它也按照 IPO 循环工作。计算机接受数据、处理数据并给出有意义的结果。数据的输入、处理和输出过程称为 IPO(输入 - 处理 - 输出)循环。 计算机系统 计算机系统被定义为用于从数据生成信息的机器。数据是原始事实和数字。信息是有意义的数据。 计算机系统由不同的部分组成,它们共同使其工作。这些部分是:硬件和软件。 你在电脑上玩游戏。游戏是软件的一个例子,鼠标、键盘、显示器和操纵杆等是硬件的例子。你在画图程序中使用鼠标绘制图片。画图程序是软件的一个例子,鼠标是硬件的一个例子。你可以触摸或感觉到硬件部件,但不能触摸软件
(i)假设,GPP森林A = GPP森林B = GPP森林C,如果森林A的npp = 1254 J /m 2 /天;森林B,npp = 2157 J /m 2 /天;和森林C,npp = 779 J /m 2 /天,其中哪个森林通过呼吸而具有最大的能量损失?给出理由。(ii)画出以下食物链数量的生态金字塔a。草 - 动物 - 宿主动物上的流量b。树 - 昆虫 - 啄木鸟