摘要:果蝇果蝇(果蝇)模型正在作为研究肿瘤进展的基本机制并鉴定新的治疗剂的强大工具。快速且价格便宜,可以比脊椎动物生物进行遗传和药物筛查。这种基于全生物的药物筛查允许评估药物吸收和毒性,从而减少了假阳性的可能性。在许多上皮癌症中,Wnt和Ras信号通路中的激活突变很常见,当在成年果蝇中肠驱动时,它会诱导侵袭性的肠道肿瘤样产物,这些产物概括了人类结肠癌(CRC)的许多方面。在这里,我们采用了果蝇CRC模型,其中肿瘤细胞用GFP和萤光素酶报告基因标记,并开发了新型的高通量测定法以量化肿瘤负担。利用这些测定法,我们发现果蝇CRC模型对使用标准CRC-drugs的治疗迅速响应,为未来快速遗传和药物筛查打开了大门。
摘要:果蝇果蝇(果蝇)模型正在作为研究肿瘤进展的基本机制并鉴定新的治疗剂的强大工具。快速且价格便宜,可以比脊椎动物生物进行遗传和药物筛查。这种基于全生物的药物筛查允许评估药物吸收和毒性,从而减少了假阳性的可能性。在许多上皮癌症中,Wnt和Ras信号通路中的激活突变很常见,当在成年果蝇中肠驱动时,它会诱导侵袭性的肠道肿瘤样产物,这些产物概括了人类结肠癌(CRC)的许多方面。在这里,我们采用了果蝇CRC模型,其中肿瘤细胞用GFP和萤光素酶报告基因标记,并开发了新型的高通量测定法以量化肿瘤负担。利用这些测定法,我们发现果蝇CRC模型对使用标准CRC-drugs的治疗迅速响应,为未来快速遗传和药物筛查打开了大门。
最近的大流行素(例如Covid-19)强调了快速开发诊断方法检测不断发展的病原体的重要性。CRISPR-CAS技术最近已用于开发诊断测定,以针对DNA或RNA的序列特异性识别。这些测定法对黄金标准QPCR具有相似的敏感性,但可以将其部署为易于使用和廉价的测试条。然而,发现可以设计底漆的基因组的诊断区域需要广泛的生物信息学分析。我们开发了Python软件包KRISP,以使用未对准的基因组序列或变体调用格式(VCF)文件作为输入来帮助彼此区分样本组的引物和诊断序列的分解。KRISP已通过使用有效的算法在几乎线性时间内运行,使用最小RAM并在可用时利用并行处理来处理大型数据集。在实验室证明了KRISP结果的有效性,通过成功设计CRISPR诊断测定法,以区分突然的橡木死亡病原体Phytophthora ramorum和密切相关的植物菌种类。KRISP根据宽松许可发布开源,并具有快速设计CRISPR-CAS诊断测定所需的所有文档。
定向肿瘤分析解决方案 Endeavor 由 Personal Genome Diagnostics (PGDx) elio™ 组织完整检测提供支持。该检测全面查询 505 个基因的单核苷酸变异 (SNV) 和插入/缺失 (indel)、23 个基因的易位、28 个基因的扩增以及微卫星不稳定性 (MSI) 和肿瘤突变负担 (TMB)。通过个性化重排末端分析 (PARE) 检测易位,这是一种由 PGDx 开发的专有方法,结合深度测序和生物信息学方法,以识别指示基因融合事件的配对末端测序。1 通过全面覆盖外显子和内含子区域,该检测能够捕获特征明确和新颖的融合事件,使其成为一种高度敏感、与融合伴侣无关的检测方法。• 使用 PathGroup 的实体肿瘤融合检测进行基于 RNA 的分子分析,
基因组编辑技术彻底改变了对动物基因组(故意基因组改变或IGA)进行有针对性改变的能力,为开发动物生物技术产品的开发提供了令人兴奋的希望,这些产品满足了动物和公共卫生需求。这些IGA的表征是监管过程的重要组成部分,以确保对动物进行预期的编辑并确定任何意外的变化。但是,目前尚无验证的测量和标准,用于表征动物意外基因组改变。为了满足这些需求,FDA CVM与美国国家标准技术研究所(NIST)建立了合作,该协作将生成资源,包括基因组编辑导致动物生物技术产品的预期和意外变化的标准化测量结果。这些资源将为动物生物技术产品开发人员和FDA调节剂提供示例表征方法,它们可以用作动物IGA的开发和调节过程,以及验证方法,材料和/或数据。在这里,我们提出了这种NIST-FDA CVM协作的初步结果。nist有资格将市售的猪细胞系及其DNA作为潜在的控制材料。细胞系在编辑之前的基因组稳定性以及基因组编辑之前和之后的序列的特征。使用纯化的猪DNA和猪细胞系评估了四个CRISPR/CAS9编辑分析,包括NIST的两项新开发。从三个硅预测因子中的三个位置和一种现有的生化测定法检测到通过基因组编辑试剂分裂的基因组位置的现有生化测定。还通过变更序列确定了由计算机预测因子中鉴定出的脱靶位点的子集,并进一步分析了编辑的猪细胞中脱靶编辑的证据。另外,与人基因组DNA相比,对变更seq分析的可重复性进行了评估,并在猪基因组DNA上进行了类似的作用。NIST生成的实验设计,协议,数据集和测量值将被发布,并可以被动物生物技术产品开发人员和公众访问。未来的工作将集中于潜在的牛控制材料和基因组编辑测定法的类似资格。
摘要:使用肿瘤活检进行基因组分析仍然是选择已获批准的分子靶向疗法的标准方法。然而,这种方法通常受到其侵入性、可行性和样本质量差的限制。液体活检提供了一种侵入性较小的方法,同时可以获取同时和全面的肿瘤基因组图谱。最近在检测血浆样本中的循环肿瘤 DNA (ctDNA) 方面取得了进展,其灵敏度、特异性和与肿瘤组织的检测一致性令人满意,这促进了基于 ctDNA 的基因组分析被批准纳入常规临床实践。最近批准了单基因和多基因检测方法,用于检测血浆游离 DNA (cfDNA) 中的遗传生物标志物作为分子靶向疗法的伴随诊断工具,这改变了晚期实体瘤的治疗决策程序。尽管基于 cfDNA 的分子分析的使用越来越多,但关于晚期实体恶性肿瘤的基因组检测是“血浆优先”还是“组织优先”方法仍存在争议。这两种方法都有可能存在优点和缺点,应仔细考虑这些因素,以个性化并选择最合适的基因组检测。本综述重点介绍了晚期实体肿瘤中基于 cfDNA 的基因组分析检测的最新进展,同时强调了制定循证指南以推荐“在正确的时间为正确的患者进行正确的检测”时应应对的主要挑战。
提案请求(RFP)粘膜疫苗测定法和采样技术有关Wellcome和Novo Nordisk Foundation Wellcome的论文是政治和财务上独立的全球慈善基金会。我们支持科学来解决所有人面临的紧急健康挑战。Wellcome支持对生活,健康和福祉的发现研究,并面临三个全球健康挑战:心理健康,气候和健康和传染病。在2021年,惠康建立了传染病健康挑战,其视野是一个世界受影响最大的社区中不断升级的传染病。于1924年在丹麦成立,Novo Nordisk Foundation是具有慈善目标的企业基金会。基金会的愿景是改善人们的健康以及社会和地球的可持续性。基金会的使命是在预防和治疗心脏代谢和传染病的预防和治疗方面进行研究和创新,以及促进知识和解决方案以支持社会的绿色转变。Wellcome和Novo Nordick基金会正在共同委托该报告,以评估粘膜组织和相关淋巴组织中人类粘膜免疫反应,以评估人类粘膜免疫反应。
方法是三个ELISA(尖峰蛋白,受体结合结构域和核素蛋白),一种微中性化测定法(MNA),一种基于假病毒的中和测定(PNA),以及IFN-γT-γT-Cell ELISPOT测定法,开发了,验证,验证,验证,验证,验证或质量质量或质量培训。在ELISA实验室单位(ELU)中测量了免疫反应,用于ELISA,MNA的50%神经化稀释(ND50),PNA的50%中和滴度(NT50)和ELISPOT分析的点形成单位。通过几何平均比率,标准偏差,线性消退和Spearman相关性分析评估了有或没有SARS-COV-2感染的个体的良好表征面板和对血液样本的控制结果的结果。
目的生物制药产品必须限制宿主细胞残留 DNA 污染物,以防止对患者产生基因毒性和免疫毒性风险。现有的残留宿主细胞 DNA 监管指南要求每剂量 ≤10ng,DNA 大小为 200bp 或更低。在病毒载体生产中,衣壳化 DNA 的数量、大小和致癌序列是额外的关注点。为了满足这一需求,赛默飞世尔科技开发了两种旨在满足监管指导的互补检测方法。Applied Biosystems™ resDNASEQ™ 定量 HEK293 DNA 试剂盒可定量总残留宿主细胞 DNA,Applied Biosystems™ resDNASEQ™ E1A DNA 片段长度试剂盒可对针对 E1A 致癌基因的短(86bp)、中(200bp)和长(476bp)片段进行大小分析。
在这里,我们提出了一种用于全面PAM表征的新型细胞分析,该测定忠实地报告了人类细胞中不同DCAS蛋白的PAM要求。These assays enable accurate detection of greatly expanded PAM profiles for our lead dCas effectors (dCasONYX, dCasRUBY, dCas- TOPAZ), enabling the efficient targeting of disease-causing genes.These assays enable ongoing engineering and character- ization of our novel dCas in relevant genomic contexts to facili- tate their translation to therapeutics.总的来说,我们介绍了在我们的宝石表观遗传编辑平台的核心优化紧凑和精确的CAS分子的工作,并证明了它们广泛的效用,这是治疗患者中棘手疾病的主要进步。