在受约束和危险环境(例如核能)中,机器人系统的近距离和部署的历史是漫长而成功的。从1940年代开始,机器人操纵器已被用来操纵危险物质,并在环境中实现了太危险或无法由人类操作员操作的环境。在数十年中,技术和科学进步提高了这些设备的功能,同时允许执行更多任务。在核退役的情况下,使用此类设备进行远程检查和远程处理已成为工作和调查某些领域的唯一解决方案。由于空间约束,缺乏对环境的最新结构知识以及可见性不佳,这些应用程序涉及具有挑战性的环境,需要大量的培训和计划才能成功。越来越需要加快这些部署过程并增加退役活动的数量,同时保持高度的安全性和绩效。考虑到围绕提高机器人能力进行的大量研究和创新,可以通过将其转化为核退役用例来产生许多潜在的好处。我们认为,在培训和部署期间(即触觉数字双胞胎)和更高的辅助或监督控制模式(即半自治操作)可以发挥重要作用,我们认为这种创新,特别是改善了环境中的反馈机制。我们列出了目前在行业中围绕电视和机器人部署遵循的一些最佳实践,以及实施上述创新的潜在好处。
摘要 - 简介:韧带平衡对于总膝关节置换术(TKA)的功能结果至关重要。最佳对齐方式仍然是一个有争议的问题。主要目标是比较功能和调整后的机械比对技术之间TKA的临床结果。次要目标是比较骨切除,机器人对齐和放射学评估。材料和方法:这是一个回顾性的病例对照系列,比较了与功能比对(FA)和调整后的机械比对(AMA)进行的TKA。64名FA受试者与64个AMA对照组匹配。与年龄,性别,体重指数(BMI),外科医生和额叶畸形类型相匹配。使用mako触觉机器人系统进行了两种手术程序。功能分数(遗忘的关节得分(FJS),膝盖协会得分(KSS)和牛津膝盖评分(OKS))在术后最终的随访中测量。同时进行了射线照相评估。结果:在FA与AMA组中,平均FJ分别为63.4±25.1 [0 - 100]和51.2±31.8 [0 - 100](p = 0.034)。平均OKS分别为40.8±6.3 [21 - 48]和34.9±11.8 [3 - 48],在FA与AMA组中(P = 0.027)。平均KSS分别为184.9±17.0 [126 - 200]和175.6±23.1 [102 - 200]在FA与AMA组中(p = 0.02)。主要残留症状为73.0%和57.8%,为6.4%和21.9%的“不稳定性”,为19.1%和12.5%的“疼痛”,FA和AMA组分别为1.6%和1.6%和7.8%(P = 0.016)。在FA组中,AMA组有4个并发症(P> 0.999)。FA和AMA组的平均术后臀部膝盖(HKA)机器人评估分别为177.3±2.0 [172 - 180]和178.2±2.0 [173 - 180](p = 0.018)。HKA机器人和HKA放射学之间的中位差异为3.0(IQR = 3.0; P <0.001)。结论:在不释放的情况下,功能比对在统计学上的短期临床结果比调整后的机械比对表现出明显好的短期临床结果。这种差异在临床上可能并不重要。
FrançoisAvry,Coralie Mousset,Edward Oujagir,Ayache Bouakaz,ValérieGouilleux-Gruart等。微生物辅助超声检查黑色素瘤皮肤癌的超声检查和治疗:系统评价。医学与生物学超声波,Inpress,48(11),pp.2174-2198。10.1016/j.ultrasmedbio.2022.06.021。Inserm-03707096
这项荟萃分析重点关注了自 1995 年以来计算机支持的单词阅读干预措施(基础阅读指导、补充字母拼写、阅读流畅度、补习阅读)对不同语言小学生阅读相关结果指标(字母知识、语音意识、单词和假词阅读、句子和文本阅读、拼写以及向阅读理解的转变)的影响。我们确定了 67 项研究,共涉及 10,734 名小学儿童,从中得出了 694 个效应大小。按照多层次方法,干预措施和结果指标的平均效应大小为 0.36,95% 可信区间(0.28,0.43)。也有证据表明效应大小向阅读理解转变,69 个效应大小平均为 0.21(95% 可信区间 0.13 – 0.29)。不同研究之间,尤其是研究内的比较之间,效应大小差异很大。效果大小受治疗长度、子词级别作为标准变量和加速测试的影响。效果大小取决于对照组条件,即在教育照常的对照条件下,效果大小较高,而在阅读治疗对照条件下,效果大小较低。结论是,技术增强的单词阅读干预措施平均对不同项目类型和不同语言的单词学习的准确性和速度产生中等积极影响。
摘要 简介 癫痫的诊断通常依赖于神经科医生对脑电图 (EEG) 的视觉解释。癫痫在脑电图上的标志是发作间期癫痫样放电 (IED)。该标记缺乏敏感性:仅在癫痫患者 30 分钟常规脑电图中的一小部分中可捕获到它。在过去的 30 年里,人们对使用计算方法来分析脑电图而不依赖于 IED 的检测的兴趣日益浓厚,但目前尚无一种方法应用于临床实践。我们旨在回顾应用于动态脑电图分析的定量方法的诊断准确性,以指导癫痫的诊断和治疗。方法与分析该方案符合 Cochrane 对诊断测试准确性系统评价的建议。我们将在 MEDLINE、EMBASE、EBM 评论、IEEE Explore 以及灰色文献中搜索 1961 年以后发表的文章、会议论文和会议摘要。我们将纳入观察性研究,这些研究提出了一种计算方法来分析脑电图以诊断成人或儿童癫痫,而不依赖于 IED 或癫痫发作的识别。参考标准是医生对癫痫的诊断。我们将报告每个标记的估计汇总敏感度和特异性以及接收者操作特征曲线下面积 (ROC AUC)。如果可能,我们将对每个单独的标记的敏感度和特异性以及 ROC AUC 进行荟萃分析。我们将使用改进的 QUADAS-2 工具评估偏倚风险。我们还将描述用于信号处理、特征提取和预测建模的算法,并评论不同研究的可重复性。道德与传播 不需要伦理批准。研究结果将通过同行评审的出版物传播,并在与该领域相关的会议上发表。 PROSPERO 注册号码 CRD42022292261。
半导体量子点中的旋转是有希望的局部量子记忆,可以产生偏振化编码的光子簇状态,如开创性的Lindner和Rudolph方案[1]。然而,利用光学转变的极化程度受到共鸣激发方案的阻碍,这些方案被广泛用于获得高光子不明显。在这里我们表明,声子辅助激发(一种保持高度可区分性的方案)也允许完全利用极化的选择性光学转变来初始化并测量单个自旋状态。我们在低横向磁场中访问孔自旋系统的相干性,并在激发态的辐射发射过程或量子点基态下直接监测自旋倾向。我们报告的旋转状态检测功能为94。7±0。由光学选择规则和25±5 ns孔旋转相干时间授予的2%,证明了该方案和系统具有以十二个光子为单位的线性簇状态的潜力。
OTOF 基因编码耳蜗内毛细胞中表达的耳蜗蛋白,其不同突变会诱发一种耳聋,而耳聋是人类无综合征隐性听觉神经病谱系障碍的主要原因。我们报告了使用与不同 Cas9 成分(mRNA 或蛋白质)相关的 CRISPR 系统,在单链寡脱氧核苷酸 (ssODN) 辅助下诱导同源定向修复 (HDR),生成了第一个 OTOF 突变大型动物模型。使用不同浓度的两个靶向外显子 5 和 6 的 sgRNA 与 Cas9 mRNA 或蛋白质 (RNP) 结合,并与靶向外显子 5 中 HDR 的 ssODN 模板混合,该模板包含两个 STOP 序列。共出生 73 只羔羊,其中 13 只出现插入/缺失突变(17.8%),其中 8 只(61.5%)通过 HDR 发生敲入突变。较高浓度的 Cas9-RNP 能更有效地诱导靶向突变,但对胚胎存活率和妊娠率有负面影响。本研究首次报道了 OTOF 破坏绵羊的产生,这可能有助于更好地理解和开发与遗传疾病相关的人类耳聋的新疗法。这些结果支持使用 ssODN 辅助的 CRISPR/Cas 系统作为牲畜基因编辑的有效工具。
近来,生物组织电子显微镜的成像吞吐量空前提高,使对整个大脑等大型组织块的超微结构分析成为可能。然而,对大型生物样本进行均匀、高质量的电子显微镜染色仍然是一项重大挑战。到目前为止,评估电子显微镜的染色质量需要对样本进行端到端的整个染色方案,对于大型样本来说,这可能需要数周甚至数月的时间,这使得此类样本的方案优化效率低下。在这里,我们提出了一种原位延时 X 射线辅助染色程序,它打开了电子显微镜染色的“黑匣子”,可以实时观察单个染色步骤。使用这种新方法,我们测量了浸入不同染色溶液中的大型组织样本中重金属的积累。我们表明,固定组织中测得的锇积累量在经验上服从孵育时间和样本大小之间的二次依赖关系。我们发现,亚铁氰化钾(四氧化锇的经典还原剂)在锇染色后可使组织变得透明,并且组织在四氧化锇溶液中会膨胀,但在还原锇溶液中会收缩。X 射线辅助染色让我们能够了解原位染色动力学,并使我们能够开发出一种扩散-反应-平流模型,该模型可以准确模拟组织中锇的测量积累。这些是朝着计算机染色实验和模拟引导优化大样本染色方案迈出的第一步。因此,X 射线辅助染色将成为开发可靠染色程序的有用工具,用于大样本(例如小鼠、猴子或人类的整个大脑)。
人类基因组学面临的一个主要挑战是破译序列与功能之间的特定关系。然而,现有的用于在原生基因组背景下进行位点特异性超突变和进化的工具有限。在这里,我们提出了一种用于长距离、位点特异性超突变的新型可编程平台,称为解旋酶辅助连续编辑 (HACE)。HACE 利用 CRISPR-Cas9 来靶向进行性解旋酶-脱氨酶融合,该融合会在较大的 (>1000 bp) 基因组间隔内引起突变。我们应用 HACE 来识别 MEK1 中导致激酶抑制剂抗性的突变,剖析 SF3B1 依赖性错误剪接中各个变体的影响,并评估 CD69 刺激依赖性免疫增强剂中的非编码变体。HACE 提供了一种强大的工具,可用于研究编码和非编码变体、揭示组合序列与功能的关系以及发展新的生物功能。
基于抽象的干细胞(SC)疗法被证明是再生医学的支柱。尽管有明显的潜在,可为再生治疗的SC的直接嫁接或植入SC遇到了各种翻译障碍,例如植入植入细胞的匮乏,降低效力降低,植入后细胞死亡,细胞死亡,细胞损害,由炎症预先存在的炎症和免疫抵押。因此,新兴大道是无细胞的方法;使用SC秘密。尽管正在探索基于药理学分子/化学物质,细胞因子和生长因子的启动方法以引起增强的秘密产量,但潜在的关注包括在分泌分离过程中需要连续补充和潜在的化学污染。为了减轻这些关注,还研究了各种用于振奋SC的非药物方法,其中包括光生物调节(PBM)具有引起的兴趣。尽管有积极的结果,但尚未确定标准化参数以进行重现结果。此外,基于PBM的SC刺激和秘密产生的机制阐明很差,并且存在对细胞类型的影响,培养条件对PBM的影响的重要知识差距。本综述旨在洞悉该新兴领域的当前状态,该领域强调了新的途径和临床翻译的潜在挑战。我们还总结了有关SC细胞类型和培养条件的基于PBM的增殖,分化和分泌的生产的研究。因此,已经提出了基于PBM的SC秘密的推定机制。此外,由于缺乏基于固定的PBM的固定协议,缺乏分化和秘密组,因此对基于PBM的SC刺激需求的功能目标和途径的知识升级。