1英国剑桥大学犬遗传学中心兽医系,英国剑桥大学(前身为纽马克特动物健康信托基金会,纽马克特,萨福克郡,英国纽马克特),2人口健康服务部,曼彻斯特曼彻斯特大学,曼彻斯特大学,英国曼彻斯特大学,英国曼彻斯特大学,国王曼彻斯特大学,国王3神经病学/神经疗法,国王king for smally Artish for smally Artist for smally nek for new formist Linnaeus兽医有限公司,雪莉,索利哈尔,英国,5号养犬俱乐部,伦敦,英国,6兽医医学与科学学院,诺丁汉大学,诺丁汉大学,萨顿·邦宁顿大学,英国,英国7,医学与临床遗传学系7 Folkhälsan研究中心,芬兰赫尔辛基
背景:抑郁综合征(DS)和认知障碍(CI)与不成功的衰老有关。但是,对喀麦隆知之甚少。本研究旨在评估喀麦隆老年人中与DS和CI相关的因素。方法:为这项横断面研究选择了599名年龄≥60岁的人的代表性样本。社会人口统计学和健康数据。ds和CI。ROSOW移动量表,日常生活活动(ADL)和日常生活(IADL)量表的乐器活动用于评估功能能力。CHI-2,ANOVA和多元回归分析,以评估与DS和CI相关的因素。统计显着性的阈值为5%。结果:平均年龄为68.9±7.2岁,性别比m/ f = 0.93,体重为68.5±14.7 kg。ds影响了14.5%的人口,CI为21.4%。在多变量分析中,DS与男性性别(OR)= 1.7 [95%置信区间(CI):1.1 - 2.7],P = 0.031)和不活动(OR = 1.7 [95%CI:1.0 - 3.0],P = 0.043)。结论:相关的因素表明,与无活动的不活动作斗争并鼓励早期和长期教育以防止老年人中的DS和/或CI。ci与缺乏教育(OR = 6.5 [95%CI:3.5 - 12.2],p <0.001),无活动性(OR = 5.3 [95%CI:1.6 - 17.9],p = 0.008),p = 0.008),单个(OR = 3.7 [95%CI:1.2 - 11.3],p = 0.0%,p = 0.05%,或3.3%,或civi:6或= 3.3%或civi:1.6或civi:1。1.1.1.19(或civi:1。1.1y)(或civi:1。1.1y)(或civi off off offof offof offof。 - 6.5],p = 0.001),并且与无IADL(OR = 0.3 [95%CI:0.2 - 0.6],P = 0.001)和ADL残疾(OR = 0.5 [95%CI:0.2 - 0.9],P = 0.032)。
基于基因组序列的躁郁症和精神分裂症的基于基因组序列的关联分析1,2,41,Sarah A. Gagliano Taliun 3,4,5,6,41,42,Kevin Liao 3,7,Matthew Flickinger 3,Janet L.
抽象背景心肌炎是免疫检查点抑制剂(ICI)使用的高度病态并发症,其表征不充分。QRS持续时间和QTC间隔是在其他心脏条件下延长的标准心电图测量。但是,没有关于它们在ICI心肌炎中效用的数据。来自国际注册表的方法,在多个时间点(ICI前,在心肌炎之前,在心肌炎之前,在ICI上,在ICI上,在ICI上,在140例心肌炎病例和179例对照中,都将ECG参数进行了比较。还测试了ECG值与重大不良心脏事件(MACE)之间的关联。结果QRS持续时间和QTC间隔在心肌炎之前和对照组之间相似。与心肌炎(97±19 ms)之前的ICI(93±19 ms)或基线相比,QRS持续时间延长了心肌炎(分别为110±22 ms,p <0.001和p = 0.009)。相比之下,与脊髓炎前基线相比,心肌炎时的QTC间隔没有增加(422±27 ms,p = 0.42)。延长的QRS持续时间增加了随后的MACE的风险(HR 3.28,95%CI 1.98至5.62,p <0.001)。调整后,QRS持续时间每增加10毫秒的增加,MACE的几率增加了1.3倍(95%CI 1.07至1.61,p = 0.011)。相反,男性之间的QTC间隔与MACE之间没有关联(HR 1.33,95%CI 0.70至2.53,P = 0.38)或女性(HR 1.48,95%CI 0.61至3.58,P = 0.39)。结论ICI心肌炎中QRS持续时间增加,与MACE风险增加有关。使用这种广泛可用的心电图参数可能有助于ICI心肌炎诊断和风险分层。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
海洋浮游生物群落形成了食物链底部相互作用生物的复杂网络,并在调节海洋生物地球化学周期和气候方面发挥了核心作用。但是,预测浮游生物社区会随着气候变化的响应而变化仍然具有挑战性。虽然物种分布模型是预测气候变化情景下物种生物地理变化的宝贵工具,但它们通常忽略生物相互作用的关键作用,这可以显着塑造生态过程和生态系统反应。在这里,我们引入了一个新颖的统计框架,关联分布建模(ADM),旨在建模和预测时空中的生态关联分布。应用于塔拉海洋基因组分辨的宏基因组学数据集,目前的生物地理位置摄影是临时海洋浮游生物协会的生物地理学揭示了沿纬度梯度组织的四个主要的生物地理生物群落。我们预测了这些生物群体特定社区的演变,以应对气候变化的情况,突出了对环境变化的差异反应。最后,我们探索了受影响的浮游生物社区的功能潜力,重点是碳固定,概述了其地理分布的预测演变以及对生态系统功能的影响。本文是主题问题的一部分,“相互关联的互动:通过空间和社交互动来丰富食物网研究”。
从双极锥体神经元的主要过程中开发了根尖树突的发展,可以由作用于局部内在决定因素的空间组织的外部线索指导。调节顶端树突极化的细胞外提示仍然难以捉摸。我们表明,领先的过程和顶端树突的发育是由III类信号素指导的,并由局部CGMP合成综合介导。与CGMP合成的酶可溶性鸟苷酸环化酶(SGC)相关的脚手架蛋白质涂鸦也将其与Semaphorin3a(Sema3a)共受体plexor Plexin的Plexine 3相关联。缺失或敲除plexina3和sema3a或plexina3-Scribble关联的破坏可防止SEMA3A介导的CGMP增加,并导致根尖树突发展中的缺陷。这些操作还损害了双极极性和领先的过程。局部CGMP高程或SGC表达挽救了Plexina3敲低或Plexina3-Scribble复合物破坏的影响。在神经元极化期间,前导过程和顶端树突的发育是由将信号素提示与CGMP增加联系起来的脚手架的。
胃癌(GC)由于预后不良和治疗选择有限,尤其是在晚期阶段,这仍然是全球健康问题。肿瘤微环境(TME),尤其是与肿瘤相关的巨噬细胞(TAMS),在肿瘤进展,免疫逃避和耐药性中起关键作用。TAMS表现出可塑性,在促弹性M1和免疫抑制M2表型之间转移,后者在GC中占主导地位,并导致不良结果。最近的治疗进步着重于靶向TAM,包括抑制M2极化,对M1表型的重编程TAM以及将TAM靶向方法与免疫检查点抑制剂相结合。纳米技术,代谢重编程和靶向关键途径(例如白介素-6和C-C基序配体2/c-C基序趋化因子受体2)的创新2进一步增强了这些策略。然而,仍然存在挑战,包括TME内TAM的空间和功能异质性以及选择性靶向以避免破坏免疫稳态的需求。对TME内部的TAM起源,功能和相互作用的持续研究对于开发精确有效的疗法至关重要。这些进步不仅有望改善GC的结果,而且还可以解决具有类似复杂微环境的其他癌症。
CRISPR – CAS系统需要在适应和干扰过程中歧视自我与非自我DNA。然而,已经报道了含有自动靶向垫片(STS)的细菌的多种情况,即CRISPR垫片针对同一基因组上的蛋白酶。sts被建议将电力自动免疫作为CRISPR-CAS防御的不良副作用或基因表达的调节机制。在这里,我们研究了超过1万个细菌基因组中STS的刺激性,分布和逃避。我们在所有CRISPR- CAS类型中发现了STS,并且在所有携带CRISPR的细菌的五分之一中。值得注意的是,多达40%的I-B和I-F CRISPR - CAS系统包含STS。我们观察到,含有基因组的STS几乎总是带有预言,并且在超过一半的情况下,STS映射到预言区域。尽管携带了STS,但CRISPR-CAS系统的遗传降低似乎很少见,这表明通过其他机制(例如抗crispr蛋白质和CRISPR靶标),STS对STS的潜在有害作用有很高的水平。我们提出了一种场景,在该方案中,可以通过I型系统中的启动间隔者获取启动间隔者的获取,而没有有害的Au-Au-tomunity效应,这可能会触发更广泛的STS堆积,而无需将自动免疫性逃避的机制造成了耐受性,从而耐受了STS的预测耐受性。
1苏黎世大学苏黎世大学分子心脏病学中心,瑞士CH-8952,瓦格斯特拉斯12号; 2瑞士Lugano的Cardiocentro Ticino Institute,Cardiocentro Ticino Institute的细胞和分子心脏病学实验室;瑞士贝林佐纳EOC转化研究的3个实验室; 4瑞士苏黎世大学医院研究与教育系; 5意大利热那亚大学内科大学内科系内科第一个诊所; 6 Irccs Ospedale Policlinico San Martino Genova - 意大利热那亚的意大利心血管网络; 7瑞士苏黎世大学医院心脏病学大学心脏中心; 8瑞士日内瓦大学医学研究基金会心脏病学系; 9男子健康研究计划:老化和代谢,哈佛医学院,杨百翰和美国马萨诸塞州波士顿的妇女医院;瑞士洛桑大学洛桑大学医院心脏病学10;瑞士; 11心脏病学系,瑞士伯尔尼Inselspital Bern; 12号皇家布隆普顿和哈尔菲尔德医院,帝国学院和国王学院,伦敦,英国