在极高的温度下,陶瓷的关键参数之一是其抗蠕变性。蠕变行为的表征通常通过弯曲试验进行评估,当拉伸和压缩之间出现不对称时,蠕变行为的表征会变得复杂。为了检测和量化这种不对称行为,建议使用数字图像相关 (DIC)。首先,高温下 DIC 需要解决几个挑战,即随机图案稳定性、辐射过滤和热雾。由于加热陶瓷的可能性有限、应变场不均匀及其水平低,这些挑战更加严重。除了几项实验发展之外,由于使用了基于临时有限元运动学的两种 DIC 全局方法,应变不确定性得到了降低。最后,将所提出的方法应用于高抗蠕变性能设计的工业锆石陶瓷在 1350°C 下的不对称蠕变分析。
抽象的双边人工耳蜗植入物(BICIS)带来了几种好处,包括改善噪声和声源定位中语音理解。但是,受益者之间的有益双侧植入物在不同的个人之间有很大差异。在这里,我们考虑了这种变异性的原因之一:两只耳朵之间的听力功能差异,即室内不对称。到目前为止,在各个研究领域中对室内不对称性的研究已经高度专业。本综述的目的是将这些研究纳入一个地方,激发未来在室内不对称领域的研究。我们首先考虑自下而上的处理,其中双耳提示是使用左耳和右耳信号的激发抑制信号来表示的,随着声音在太空中的位置而变化,并由听觉脑干中的横向上橄榄表示。然后,我们考虑通过预测编码进行自上而下的处理,该编码假设感知源于基于上下文和先前的感官体验的期望,以级联的皮质回路表示。根据传入的感觉输入,维护和更新了内部感知模型。一起,我们希望这种对生理,行为和建模研究的融合将有助于弥合双耳听力领域的差距,并更清楚地理解对室内不对称的对未来对最佳患者干预措施的研究的影响。
观察一名32岁的右撇子女性出现了耐药性癫痫。全面的癫痫评估表明,癫痫灶涉及整个左额叶,但提供了较少的结构异常证据。为了估计可能由左额叶切除术引起的功能恶化程度,作者评估了通过向对侧半球和对侧半球评估的细分皮质功能,这是通过向颅内息肉的分支中的丙泊拟置inpersective Infusion。结果显示了语言功能的双边和不对称定位,因为患者在每个半球中都表现出不同的失语症。基于作者对其功能耐受性的评估,进行了左额叶切除术,并导致了预期范围内的神经系统效果。
抽象的全稳态电池(ASSB)被认为是提高电池安全性和能量密度的最有希望的候选者。硫化物电解质具有狭窄的电化学窗口,该窗口阻碍了其应用与高压阴极。具有高压耐力的卤化物电解质可以帮助解决此问题。在此,采用喷涂和污染方法的组合用作处理自由的LI 6 PS 5 Cl(LPSCL)不对称的电解质膜(19.23Ωcm2,75μm),用10μmLi3包含6(Licl)层装饰。LICL-LPSCL不对称的电解质膜增强了高压稳定性,使LINI 0.83 CO 0.83 CO 0.11 Mn 0.06 O 2(NCM811)和LI 1.2 Ni 0.13 CO 0.13 CO 0.13 CO 0.13 Mn 0.54 0.54 O 2(LRMO)Cathodes。NCM811 | LICL-LPSCL | NSI ASSB的初始库仑效率(ICE)为85.13%,在200个周期后的容量保留率为77.16%。Compared with the LPSCl membrane, the LICl-LPSCl membrane displayed high stability with the LRMO cathode as the charging cut-off voltage increased to 4.7 V, which improved the initial charge capacity from 143 to 270 mAh g −1 and achieved stable cycling of 160 mAh g −1 at 0.5 C. Additionally, we attempted continuous LICl-LPSCl membrane production and utilized the product to fabricate a基于LRMO的小袋型ASSB。LICL-LPSCL电解质膜的制造证明了其在Assbs中的可控和行业适应应用的潜力。
Attenuation (typical values at Z=50Ω) ───── asymmetrical, all branches in parallel (common mode) - - - - - - - - symmetrical (differential mode) DATA SHEET 09-34 Jun./18 9 OF 9
Macaluso,A。(2016)。前交叉韧带重建后早期的不对称下肢负荷是在返回运动时不对称载荷的重要预测指标。《美国物理医学与康复杂志》,95(4),248-255。22。Lee,D。W.,Yang,S。J.,Cho,S.I.,Lee,J.H。和Kim,J.G。(2018)。 单腿垂直跳跃Lee,D。W.,Yang,S。J.,Cho,S.I.,Lee,J.H。和Kim,J.G。(2018)。单腿垂直跳跃
随着芯片技术的出现,用于人工智能应用的高端封装变得越来越密集。其中,封装基板的密度也在不断提高,最近的基板倾向于采用非对称基板结构。然而,这种非对称基板会因芯片接合的加热过程而引起翘曲,因此在设计阶段控制基板中的铜剩余率以抑制翘曲是必不可少的。本文采用遗传算法来优化铜剩余率,并提出了一种考虑芯片接合时允许的翘曲值的算法流程。实际优化评估的结果证实了所提流程的优越性。
检查了保护的方向性、跳闸安全性和超限性。所有测试都是在电流互感器铁芯中有和没有剩磁通量的情况下进行的。很难对剩磁通量的额外裕度给出一般性建议。这取决于可靠性和经济性的要求。使用 TPY 型电流互感器时,由于有抗剩磁气隙,实际上不需要额外的裕度。对于 TPX 型电流互感器,在决定额外裕度时,必须牢记完全不对称故障的概率很小,并且最大剩磁通量的方向与故障产生的磁通量相同。当故障发生在零电压 (0°) 时,将实现完全不对称故障电流。调查证明,电网中95%的故障发生在电压在40°~90°之间。