弗里德赖希共济失调 (FRDA) 是一种遗传性多系统疾病,主要由 frataxin (FXN) 基因内含子 1 中的 GAA 过度扩增引起。这种扩增突变在转录上抑制了 FXN,FXN 是一种线粒体蛋白,是铁代谢和线粒体稳态所必需的,导致神经退行性和心脏功能障碍。目前,FRDA 的治疗方案集中于通过药物干预改善线粒体功能和增加 frataxin 表达,但在临床试验中无法有效延缓或预防神经退行性病变。最近在 FRDA 动物和细胞模型中对体内和体外基因治疗方法的研究展示了其作为 FRDA 一次性疗法的前景。在本综述中,我们概述了 FRDA 基因治疗的当前和新兴前景,特别关注 CRISPR/Cas9 介导的 FXN 基因编辑作为恢复内源性 frataxin 表达的可行选择的优势。我们还评估了造血干细胞和祖细胞中的体外基因编辑作为潜在的自体移植治疗选择的潜力,并讨论了其在解决 FRDA 特定安全问题方面的优势,以实现临床转化。
1 德国神经退行性疾病中心 DZNE,德国波恩 2 德国波恩大学医院神经内科 3 德国波恩亚琛工业大学神经内科 4 德国于利希研究中心 JARA-脑研究所分子神经科学和神经成像 5 巴西坎皮纳斯神经科学与神经技术研究所 (BRAINN) 6 巴西坎皮纳斯大学神经内科 7 中南大学湘雅医院神经内科,中国长沙 8 中南大学湘雅医院放射科,中国长沙 9 荷兰奈梅亨拉德堡德大学医学中心唐德斯脑、认知与行为研究所神经内科 10 巴黎索邦大学脑研究所、AP-HP、INSERM、CNRS、法国巴黎皮提耶-萨尔佩特里埃大学医院 11 英国伦敦伦敦大学学院皇后广场神经病学研究所临床和运动神经科学系共济失调中心 12 英国伦敦伦敦大学学院医院 NHS 基金会国家神经病学和神经外科医院 13 德国图宾根大学神经退行性疾病系和赫蒂临床脑研究所 14 德国图宾根神经退行性疾病中心 (DZNE) 15 德国图宾根大学医院诊断和介入神经放射学系 16 美国明尼苏达州明尼阿波利斯市明尼苏达大学放射学系磁共振研究中心 17 荷兰格罗宁根大学格罗宁根大学医学中心神经病学系
atxn3是一种泛素水解酶(或去泛素酶,DUB),ATXN3基因的产物,在包括周围和神经元组织在内的各种细胞类型中表达,并参与多种细胞途径。重要的是,ATXN3基因内CAG三核苷酸的扩展导致编码蛋白中的聚谷氨酰胺结构域扩展,该蛋白质已与脊椎小脑共济失调的3型发作相关,这也是Joseph病 - 也称为Machado - Joseph Disease,是最常见的Joseph疾病,是最常见的占主导地位的共生性共济失因Worldwordiide Worldword Worldweldiide。ATXN3几十年来一直在进行密集调查中。在这篇综述中,我们总结了ATXN3在蛋白质,DNA修复和转录调节中的主要功能,以及在调节染色质结构中的新兴作用。在病理扩展的ATXN3形式的背景下,还审查了提到的ATXN3的分子函数。
我们报告了一名20岁的阿曼男性,有近亲父母的男性,其逐渐频繁的跌倒和共济失调具有延迟的运动里程碑,发现SACS 13q12.12的纯合变异突变暗示了常染色体隐性膜性痉挛性(charlevoix – Sagaguenay(Arsacs))。头部和颈椎的磁共振成像(MRI)显示脑海中的双侧低义条纹(Tigroid Expect),上小脑vermis的萎缩以及callosum callosum callosum萎缩的萎缩和call骨的中体萎缩。肌电图(EMG)和神经传导研究(NCS)显示感觉运动多神经病。维生素B12,生育酚(维生素E)和外周涂片的血液检查并不明显。管理层涵盖了一种多学科的方法,它采用了tizanidine,肉毒杆菌毒素B注射以及广泛的身体和平衡康复。
摘要性共济失调 - 凝血症(A-T)是一种非常罕见的DNA修复多系统疾病,与进行性残疾神经学症状,呼吸衰竭,免疫缺陷和癌症的易感性有关,导致过早死亡。没有可用于A-T的治疗方法,但是临床试验已经开始。有效评估A-T疗法的主要限制因素是缺乏合适的结果指标和生物标志物。我们进行了系统的审查,以收集目前在患者和临床前研究的生物标志物上可用的信息。我们已经确定了56个报告,讨论了临床前模型和患者中潜在的A-T生物标志物。这些研究报告了诊断生物标志物,但目前缺乏预后生物标志物和临床状况的反应标记。A-T中神经退行性的一些生物标志物显示了诺言,包括非侵入性神经影像学生物标志物。在临床试验中,对放射疗法和类固醇治疗的氧化应激和反应性标志物的一些生物标志物具有潜在的价值。与国际专家的A-T生物标志物工作组成立是促进材料,数据和专业知识共享的重要一步,其共同目标是为A-T找到有效的生物标志物。
弗里德赖希共济失调 (FRDA) 是一种常染色体隐性神经退行性疾病,由 frataxin (FXN) 基因内含子 1 中的 GAA 重复扩增引起,导致线粒体铁结合蛋白 frataxin 的表达显著降低。我们之前报告说,同基因造血干细胞和祖细胞 (HSPC) 移植可防止 FRDA 小鼠模型 YG8R 中的神经退行性。我们表明,挽救机制是由功能性 frataxin 从 HSPC 衍生的小胶质细胞/巨噬细胞转移到神经元/肌细胞所介导的。在本研究中,我们报告了使用 CRISPR-Cas9 系统进行 FRDA 自体 HSPC 移植的第一步。我们首次鉴定出一对 CRISPR RNA(crRNA),它们可有效消除人类 FRDA 淋巴母细胞中的 GAA 扩增,恢复 frataxin 表达的非病理水平,并使线粒体活动正常化。我们还优化了从健康和 FRDA 患者外周血中分离的 HSPC 中的基因编辑方法,并证明基因编辑细胞在体外和体内造血正常。该过程不会诱发细胞毒性作用或重大脱靶事件,但在基因编辑细胞中观察到 p53 介导的细胞增殖延迟。这项研究为将基因校正的 HSPC 自体移植用于 FRDA 的临床转化奠定了基础。
弗里德赖希共济失调 (FRDA) 是一种常染色体隐性神经退行性疾病,由 frataxin (FXN) 基因内含子 1 中的 GAA 重复扩增引起,导致线粒体铁结合蛋白 frataxin 的表达显著降低。我们之前报告说,同基因造血干细胞和祖细胞 (HSPC) 移植可防止 FRDA 小鼠模型 YG8R 中的神经退行性。我们表明,挽救机制是由功能性 frataxin 从 HSPC 衍生的小胶质细胞/巨噬细胞转移到神经元/肌细胞所介导的。在本研究中,我们报告了使用 CRISPR-Cas9 系统进行 FRDA 自体 HSPC 移植的第一步。我们首次鉴定出一对 CRISPR RNA(crRNA),它们可有效消除人类 FRDA 淋巴母细胞中的 GAA 扩增,恢复 frataxin 表达的非病理水平,并使线粒体活动正常化。我们还优化了从健康和 FRDA 患者外周血中分离的 HSPC 中的基因编辑方法,并证明基因编辑细胞在体外和体内造血正常。该过程不会诱发细胞毒性作用或重大脱靶事件,但在基因编辑细胞中观察到 p53 介导的细胞增殖延迟。这项研究为将基因校正的 HSPC 自体移植用于 FRDA 的临床转化奠定了基础。
摘要:弗里德里希(Friedreich)的共济失调(FRDA)是最普遍的遗传性共济失调形式,以渐进的运动性共济失调,振动敏感性的丧失和骨骼畸形为标志,严重影响了日常功能。迄今为止,唯一可用于治疗FRDA的药物是最近获得FDA批准的Omaveloxolone(Skyclarys®)。负责细胞内铁稳态调节的人frataxin(FXN)基因内的错义突变与FRDA发育有关。这些突变会诱导FXN功能障碍,促进线粒体铁的积累并增强氧化应激,最终触发神经元细胞死亡途径。这项研究合并了来自文献和数据库搜索的226个FXN遗传变异,并只有18个先前表征。预测分析表明,FXN突变的有害和不稳定预测的发生率显着,主要影响对蛋白质功能至关重要的保守残基。此外,构建了人类FXN的准确,全面的三维模型,是生成遗传变异I154F和W155R的基础。这些变体的严重临床意义,进行了分子动力学(MD)模拟,在其N末端段中揭示了灵活性和基本动态变化,其中包括FXN42,FXN56和FXN78领域的蛋白质成熟。因此,我们的发现表明在I154F和W155R突变引起的FXN42,FXN56和FXN78域中的潜在相互作用曲线干扰,与现有文献保持一致。
披露T.A.Y是德克萨斯大学医学博士Anderson癌症中心的雇员,也是应用癌症研究所的医学主任,该研究所对DDR和其他抑制作用具有商业兴趣; has received fund funding paid to their institution from Acrivon, Artios, AstraZeneca, Bayere, Blueprint, Bristol Myrs Squbibb, Clovis, Constellation, Cyteir, Eli Lilly, Emd Serono, Forbis, F-star, Glaxosmithkline, Genentech, Haihe, IONSENSOR, iOnis, iPsen, Karyopharm, KSQ, Kyowa,默克,Mirati,Novarti,Pfizer,Ribion Therapeutics,Repare,Repare,Repare,Rubus,Sanfi,Scholock,Scholar Rock,Seattle Genetics,Tesro,Vivace和Zenith;已经获得了Abbvie,Astrazeneca,Acrivo,Acrivo,Acrivo,Acrivo,Acrivo,Almac,Aduphista,Aduphista,Artios,Artios,Artios,Avoro,Avoro,Avoro,Avoro,Avoro,Avoro,Avoro,Avoro,Axiom,Baptist Health Systems,Bayere,Bayere,Bayere,Bayere,Begene,Boxer,Boxer,Brisol Miyers Squire,cy cy cy cy cy cy a cy can cy cy cal, Emd sero, F-star, Genmab, GLG, GLG, Globe Life Sciences, Glaxosmithkline, Guidepoint, Ignyta, Ignyta, I-mab, Immunesensor, Institute, gustave Roussy, intellisphere, Jansen, Kyn, mei pharma, mereo, mereo, mereo, merck, natira, nexys, nocure, ohsu, online Pharma,Pegascy,Per,Pfizer,Piper-Sandler,Progynx,Reparo,Restorbio,Rothe,Roche,Schrodinger,Theragnostics,Varian,Verian,Versation,Vibliome,vibliome,Xinhera,Zai Labs和Zelbio;并且是本季节的股东。I.M.S.,A.J,J.D.S,C.M,D.U,V.R和MK是Reparetics的雇员,可以持有股票和/或股票期权。 M.Z是Repare Therapeutics的前Empiloyee,可以持有股票和/或股票期权。I.M.S.,A.J,J.D.S,C.M,D.U,V.R和MK是Reparetics的雇员,可以持有股票和/或股票期权。M.Z是Repare Therapeutics的前Empiloyee,可以持有股票和/或股票期权。缩写2W/1W,休假2周; 3D/4D,3天/4天休假; alt,端粒的替代延长; APB,与Alt相关的PML体; ATRI,共济失调的毛细血管扩张和RAD3相关抑制剂; BNHL,B细胞非霍奇金淋巴瘤; CA-125,癌症抗原125; Cam,Camonsertib; CHRC,铬虫肾细胞癌; ctDNA,循环肿瘤DNA; CTF,循环肿瘤部分; EAC,食管腺癌; ECOG PS,东方合作肿瘤学组绩效状况;上皮; GBM,胶质母细胞瘤多形;吉西他他滨妇科癌综合宝石; HCC,肝细胞癌;人力资源,同源重组; IPI,ipilimumab; LGG,低级神经胶质瘤; LMS,平滑肌肉瘤; LPS,脂肪肉瘤; MVAF,平均变体等位基因频率; Nivo,Nivolumab;奥拉(Ola),奥拉帕里布(Olaparib); OS,骨肉瘤; PAAD,胰腺腺癌; PARPI,聚ADP-核糖聚合酶抑制剂; PCAWG,整个基因组的泛伴奏分析; PNET,胰腺神经内分泌肿瘤; PR,部分反应; PSA,前列腺特异性抗原; QD,每天一次; RCC,肾细胞癌;恢复,实体瘤的反应评估标准; RP2D,建议的2期剂量; SNIPDX,用于精确诊断的合成致命相互作用; ssDNA,单链DNA; ST,软组织; TF,肿瘤分数; TVR,端粒变体重复; W,周; WGS,整个基因组测序;是的,多年。
DNA 损伤反应是细胞维持基因组完整性能力的重要组成部分,它通过对 DNA 损伤作出反应并减轻损伤,或启动不可修复损伤细胞的细胞死亡来维持基因组完整性。癌细胞经常利用这种反应来逃避细胞死亡,从而使突变细胞得以存活,并产生对化疗和放疗等 DNA 损伤剂的治疗耐药性。前列腺癌 (PCa) 细胞经常表现出 DNA 损伤反应基因的改变,包括毛细血管扩张性共济失调突变 (ATM),这与侵袭性疾病表型有关。最近,聚 (ADP-核糖) 聚合酶 (PARP) 抑制的成功已导致临床批准了几种用于治疗转移性 PCa 男性的 PARP 抑制剂,然而,一个关键的限制是耐药性和复发的产生。另一种方法是选择性地靶向 ATM 和毛细血管扩张性共济失调和 Rad3 相关 (ATR),由于它们处于 DDR 的最前沿,因此代表了有吸引力的药理学靶点。研究表明,ATR 抑制可与 PARP 抑制和其他癌症治疗协同作用,以增强抗肿瘤活性。ATM 缺陷是 PCa 的常见特征,ATM 和 ATR 之间存在合成致死关系,ATR 抑制可在 ATM 缺陷的 PCa 细胞中诱导选择性细胞死亡。当前的研究强调了在 ATM 缺陷的前列腺肿瘤中以 ATR 为治疗靶点的可行性,并结合其他治疗方法来提高整体疗效并降低治疗耐药性。ATM 还是一种重要的分子生物标记物,可将患者分层为有针对性的治疗组并帮助预测个性化医疗。