(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年4月27日发布。 https://doi.org/10.1101/2024.04.27.591127 doi:Biorxiv Preprint
三维(3D)特定细胞种群,蛋白质表达模式或整个大脑水平的病理标记物的可视化代表了神经科学中的宝贵工具。光学投影断层扫描(OPT)和光板荧光显微镜(LSFM)是高分辨率的光学3D成像技术,可以在介质尺寸(MM-CM范围)透明标本中特异性标记的目标可视化(Sharpe等,2002; Dodt et al。,2007年)。因此,这些光学技术非常适合于体内整个啮齿动物脑成像,从而在完整大脑的细胞分辨率下提供信息(Alanentalo等,2007; Hansen等,2020)。与其他功能成像方式一致,OPT和LSFM对其目标表现出很高的灵敏度和特异性,但仅提供非常有限的解剖信息。考虑到大脑的高度分室解剖结构以及这些区域履行的特定作用,至关重要的是能够将OPT或LSFM获得的荧光信号映射到注释的大脑区域。在解剖学上绘制蛋白质表达谱并在这些图像上执行3D定量和统计的可能性将极大地使光学中学成像在神经科学中的应用有益。
需要进行定量分析和模型,以将植物的细胞组织与其新陈代谢联系起来。但是,定量数据通常散布在多个研究中,发现此类数据并将其转换为有用的信息是耗时的。因此,有必要集中可用数据并突出其余的知识差距。在这里,我们提出了一种逐步的方法,可以从各种信息源中手动提取定量数据,并统一数据格式。首先,对拟南芥叶的数据进行了整理,检查了一致性和正确性,并通过交叉检查来源进行策划。第二,通过应用计算规则将定量数据组合在一起。然后将它们集成到代表Arabidopsis参考叶的独特综合,参考,可重复使用的数据汇编中。该地图集包含在细胞和亚细胞水平的叶片中发现的15种细胞类型的指标。
全球海洋基因组(海洋生物中的基因库及其编码的功能信息)是科学和社会的主要,未开发的资源,在生物医学,能源和食品等领域的生物技术应用不断增长。shot弹枪测序和宏基因组学现在可以用来分类海洋微生物寿命的多样性并探索其功能潜力,但受样本覆盖,访问合适的测序平台的访问和计算能力的限制。在这里,我们基于对2,102种采样的海洋宏基因组的分析提供了全球海洋基因组的新综合,并通过KAUST元基因组分析平台(KMAP)全球海洋基因目录1.0包含〜31750万基因簇的基因组装和注释。从分类学上,我们报告了海洋基因在生命之树以及不同的海盆和深度区域生物群落中的分布。在功能上,我们将其与蛋白质家族和生物地球化学过程的关系绘制,包括主要的微生物代谢途径,这些途径是处理三个元素在生物地球化学周期中起着基本作用的元素,并且与气候变化有关。这些数据扩展了我们对海洋微生物组及其代谢能力的复杂,动态性质的理解。进一步的研究对于释放海洋基因组的潜力并理解和预测人类引起的变化的影响,包括污染和气候变化至关重要。进一步的假设驱动的研究应使用增强的宏基因组方法靶向采样不足的深海和底栖微生物群落,以更好地了解海洋生态系统功能。对必要的计算能力进行投资至关重要,合适的知识产权框架也是必不可少的。
Adrian Gottschlich#1,2,3,Moritz Thomas#4,5,RuthGrünmeier#1,Stefanie Lesch 1,Lisa Rohrbacher 3,6,Veronika IGL 1,Daria Briukhovetska 1 XU 9,Dario Dhoqina 1,FlorianMärkl1,Sophie Robinson 10,11,Andrea Sendelhofert 12,Heiko Schulz 12,Öyküumut1,Vladyslav Kavaka 13,14 ,索菲亚股票1,3,15, PhilippJieMüller1,JaninaDörr1,Matthias Seifert 1,Bruno L. Cadilha 1,Ruben Brabenec 1,4,NatalieRöder1,FelicitaS Rataj 1,ManuelNüesch1,Franziska Siska Modemann 16,17,Jasmin Wellbrock 16,Walbrock 16,Walbrock 16,walbrock偏见Herold 3,15,Dominik Paquet 10,11,Irmela Jeremias 7,8,15,Louisa Von Baumgarten 15,19,Stefan Endres 1,15,20,Marion Subklewe 3,6,15,Carsten Marr 3,§
将许多核分开并封装为描述的鲁棒和可再现的起点。在划定4版的灰质区域中,SMRI/DTI数据提供的信号强度差异不足以识别神经结构的变化。在这些区域中,通过从组织学部分图像中注册到地图集的信息来确定边界的位置,例如,从其他参考地图集中显示了细胞结构组织,或从包含立体坐标的已发表的地图中显示。以这种方式,WHS大脑大脑Atlas V4的描述建立在几种解剖信息的来源上。基于对比的地标通常是可重现的,并被认为是定义大脑区域的有意义的标准,其他标准,如示例
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2023年4月22日发布。 https://doi.org/10.1101/2023.04.22.537909 doi:Biorxiv Preprint
•检查车辆的发动机已关闭。•删除旧电池的负端子连接。•卸下正端子连接,然后卸下拆卸支架或夹具。•用新电池更换旧电池,并在托盘中修复新电池。•在更换新的之前,请检查托盘是否腐蚀。如有必要,使用钢丝刷清洁电池持有人和电池端子。