化学教学始于 1922 年,当时有三所学院,分别是圣史蒂芬斯学院、印度学院和拉姆贾斯学院。化学教学仅限于学士学位课程的两年制课程,而 I.Sc. 水平的教学则在大学的各个学院进行。1933 年 10 月,大学办公室和图书馆迁至总督府邸,化学系在总督府厨房里默默无闻地起步,该厨房用于举办讲座和实践课。1942 年,在杰出的副校长莫里斯·格威尔爵士的特别努力下,新实验室和教室建成,并邀请了有远见的教职员工。1949 年 6 月,TR Seshadri 教授接任系主任,由于他的不懈努力,研究活动逐渐增多,该系在国际上获得了极高的声誉,成为最好的化学学院之一。 1963 年,大学资助委员会将化学系认定为天然产物化学高级研究中心。1965 年,化学系被认定为化学高级研究中心。该系在化学和化学与物理和生物科学交织的广泛领域中,以创新和开拓性研究中心而著称。1982 年,该系被 DST 评为 DST-FIST 赞助系。在国际化学年 (2011) 中,该系被 DST 评为该国表现最好的化学系之一。
摘要 大气水收集 (AWH) 装置代表着解决全球水资源短缺问题的巨大希望。AWH 技术的迅猛发展和各种 AWH 技术的广泛传播将极大地促进 AWH 机器在不同家庭、农业和工业应用中的实施。在过去的几十年中,人们对 AWH 方法进行了大量研究,但结果差异惊人,误导了读者甚至研究人员。在本研究中,回顾了 AWH 理论技术的发展、各种 AWH 方法和市场上的各种 AWH 机器。对不同的理论方法进行了比较,着重统一基于面积和单位收获量能耗的结果,以便对不同的已发布数据进行清晰判断。阐述了理论与市场现有设备之间的差距,并提出了进一步开发 AWH 技术的建议。
附属单位:b luestein — 俄克拉荷马大学气象学院,俄克拉荷马州诺曼市;c Hilson 和 P alMer — 俄克拉荷马大学气象学院和高级雷达研究中心,俄克拉荷马州诺曼市;r auber — 伊利诺伊大学厄巴纳-香槟分校,伊利诺伊州厄巴纳;b urgess — 中尺度气象学研究合作研究所,俄克拉荷马州诺曼市;J orgensen — 美国国家海洋和大气管理局 / 国家强风暴实验室,俄克拉荷马州诺曼市;a lbrecHt — 迈阿密大学,佛罗里达州迈阿密;ellis、lee 和 weckwertH — 美国国家大气研究中心,科罗拉多州博尔德市;r icHardson 和 Markowski — 宾夕法尼亚州立大学,宾夕法尼亚州帕克市;F rasier — 马萨诸塞大学阿默斯特分校微波遥感实验室,马萨诸塞州阿默斯特市; y uter — 北卡罗来纳州立大学,北卡罗来纳州罗利市;d owell — 国家海洋和大气管理局
用于研究城市空气质量的低成本传感器越来越多。这里我们展示了此类传感器如何以网络形式部署,提供对污染物排放模式的前所未有的洞察,在这个例子中是伦敦希思罗机场 (LHR)。传感器网络的测量结果用于明确区分机场排放和长距离传输,然后推断出机场各类活动的排放指数。这些用于约束空气质量模型 (ADMS-Airport),为建模污染物浓度创建强大的预测工具。对于二氧化氮 (NO 2 ),结果表明非机场成分是机场周围年 NO 2 的主要部分 (∼ 75%),尽管预计增加跑道会导致与机场有关的 NO 2 排放量增加,但道路交通排放量的改善可能会抵消这一增长幅度。这项工作的重点是伦敦希思罗机场,但我们展示的传感器网络方法具有普遍适用于广泛的环境监测研究和空气污染干预的普遍适用性。
本文件是作为美国政府机构赞助的工作记录而编写的。美国政府、加利福尼亚大学及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或加利福尼亚大学对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或加利福尼亚大学的观点和意见,不得用于广告或产品代言目的。
在其整个生命周期中,航天运载火箭都会影响地球和太空中的局部和全球环境。鉴于航天工业的预期增长,最近的文献表明,这些活动对大气的影响研究不足,也未得到充分解决。火箭以独特的方式将燃烧气体和颗粒排放到大气的不同层中,通过辐射强迫引起包括臭氧化学和地球能量平衡扰动在内的影响。国际环境法规目前并未解决火箭排放问题,国家层面只有稀少的孤立政策。需要对航天发射的影响进行更多研究,包括新的现场测量和全球大气模型,以指导政策制定和未来的缓解措施。制定可操作和协作的运载火箭可持续性指数可以作为未来法规的基础,或通过将减排作为竞争优势来激励该行业采用更可持续的设计。2021 年是私人航天行业的转折点。在商业首创中
观察,建模和研究,以及时,熟练,基于位置的知识和可行的数据和技术援助的交付,以帮助国家将气候纳入影响整个公共和私营部门运营的量表的决策。这些服务旨在解决天气,水和气候与与气候相关的危害(例如飓风,洪水,干旱,空气污染,极端热量和寒冷,寒冷,火灾,龙卷风,冬季风暴,海洋热浪以及这些危害的复合和级联形式),它们与社会结构的交集以及各种各样的影响以及各种各样的影响。通过提供这些服务,NOAA旨在支持社会所有部门的公平和包容性决策和计划,并提高政府机构,部落实体,企业,社区和个人在管理风险,增强弹性,增强弹性以及适应气候变化和变化影响的影响方面的能力。NOAA气候服务还旨在告知对未来气候变化的缓解。
○ESM(MAPP)○现场活动实施(CVP):热带太平洋观察系统(TPOS)赤道太平洋实验(TEPEX)○UXS数据开发/气候应用程序分析○博士后机会:NOAA气候和全球变化竞争的重点
随着2025年太阳能周期的峰值接近,并且单个地磁风暴显着改变居民空间对象(RSO)的轨道的能力,大气密度预测的技术对于空间情况意识至关重要。虽然先前已将线性数据驱动的方法(例如使用控制模式分解(DMDC))用于预测大气密度,但基于深度学习的预测具有捕获数据中非线性的能力。通过从历史大气密度数据中学习多层权重,数据集中的长期依赖性被捕获在当前大气密度状态与控制下一个时间段的大气密度状态之间的映射中。通过开发基于非线性变压器的大气密度预测的非线性变压器结构,这项工作可改善大气密度预测的先前线性传播方法。经验NRLMSISE-00和JB2008,以及基于物理的TIEGCM大气密度模型,以与DMDC和基于变压器的传播器进行预测。
打开文件后,发声的处理就开始。分析的进度显示在主屏幕左下角的状态框中,但是在处理完成之前,屏幕将保持空白。在完成探测分析后,初始屏幕将充满基于选项卡的显示,其中每个选项卡代表数据的不同视图。选项卡按数据处理的一般顺序从左到右(请参见下图),即从原始数据到QC和级别计算到编码消息。阅读选项卡显示部分以进行进一步说明。