使用微波和红外波长对地球的Atmo球形状态进行了远程测量[1,2]。涉及这些光谱区域的物理考虑包括在微波波长度上具有相对较高的云渗透能力以及红外波长处的相对急剧的加权函数,尤其是在4 µM附近的短波区域中,普兰克非线性非线性会进一步提高温度敏感性。 红外光谱仪技术在过去15年左右的时间内已明显发展,从而导致了沿狭窄的大气吸收特征间隔的数千个频段的同时光谱采样[3]。 于2002年5月推出的大气红外发声器(AIRS)的尺寸为3.7至15.4 µm,并于2006年推出的红外大气发声干涉仪(IASI),尺寸为8461个通道,3.6至15.5 µm [4,5]。 这些传感器以及类似的传感器作为国家极性操作的环境卫星系统(NPOESS)和气象卫星(Meteo SAT)第三代系统的一部分,从而通过使用高度光谱测量,从而实质上改善了大气的声音,从而在整个大气中产生更大的垂直分辨率[6]。涉及这些光谱区域的物理考虑包括在微波波长度上具有相对较高的云渗透能力以及红外波长处的相对急剧的加权函数,尤其是在4 µM附近的短波区域中,普兰克非线性非线性会进一步提高温度敏感性。红外光谱仪技术在过去15年左右的时间内已明显发展,从而导致了沿狭窄的大气吸收特征间隔的数千个频段的同时光谱采样[3]。于2002年5月推出的大气红外发声器(AIRS)的尺寸为3.7至15.4 µm,并于2006年推出的红外大气发声干涉仪(IASI),尺寸为8461个通道,3.6至15.5 µm [4,5]。这些传感器以及类似的传感器作为国家极性操作的环境卫星系统(NPOESS)和气象卫星(Meteo SAT)第三代系统的一部分,从而通过使用高度光谱测量,从而实质上改善了大气的声音,从而在整个大气中产生更大的垂直分辨率[6]。
本报告是作为美国政府赞助的工作的帐户准备的。美国或其任何雇员均未对任何信息,设备,产品或过程的准确性,完整性或实用性承担任何法律责任或责任,或承担任何法律责任或责任,或者承担任何法律责任或责任。以本文提及的任何特定商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或对其任何代理机构的认可,建议或偏爱。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
– 奥地利航天局 (ASA)/奥地利。– 比利时科学政策办公室 (BELSPO)/比利时。– 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。– 中国卫星发射和跟踪控制总局、北京跟踪与电信技术研究所 (CLTC/BITTT)/中国。– 中国科学院 (CAS)/中国。– 中国空间技术研究院 (CAST)/中国。– 联邦科学与工业研究组织 (CSIRO)/澳大利亚。– 丹麦国家空间中心 (DNSC)/丹麦。– 航空航天科学与技术部 (DCTA)/巴西。– 电子和电信研究院 (ETRI)/韩国。– 埃及空间局 (EgSA)/埃及。– 欧洲气象卫星利用组织 (EUMETSAT)/欧洲。– 欧洲电信卫星组织 (EUTELSAT)/欧洲。– 地理信息和空间技术发展机构 (GISTDA)/泰国。– 希腊国家空间委员会 (HNSC)/希腊。– 希腊空间局 (HSA)/希腊。– 印度空间研究组织 (ISRO)/印度。– 空间研究所 (IKI)/俄罗斯联邦。– 韩国航空宇宙研究院 (KARI)/韩国。– 通信部 (MOC)/以色列。– 穆罕默德·本·拉希德太空中心 (MBRSC)/阿拉伯联合酋长国。– 国家信息和通信技术研究所 (NICT)/日本。– 国家海洋和大气管理局 (NOAA)/美国。– 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。– 国家空间组织 (NSPO)/中国台北。– 海军空间技术中心 (NCST)/美国。– 荷兰空间办公室 (NSO)/荷兰。– 粒子与核物理研究所 (KFKI)/匈牙利。– 土耳其科学技术研究委员会 (TUBITAK)/土耳其。– 南非国家航天局 (SANSA)/南非共和国。– 空间和高层大气研究委员会 (SUPARCO)/巴基斯坦。– 瑞典空间公司 (SSC)/瑞典。– 瑞士空间办公室 (SSO)/瑞士。– 美国地质调查局 (USGS)/美国。
尽管物理模型可以非常成功地消除大气和地形影响,但它们本质上依赖于精确的光谱和辐射传感器校准以及崎岖地形中数字高程模型 (DEM) 的精度和适当的空间分辨率。此外,许多表面都有双向反射行为,即反射取决于照明和观看几何。如果观察不是在太阳主平面进行,则通常假设各向同性或朗伯反射定律适用于小视场 (FOV < 30 o,扫描角度 < ± 15 o) 传感器。然而,对于大 FOV 传感器和/或靠近主平面的数据记录,自然表面的各向异性反射行为会导致图像中的亮度梯度。这些影响可以通过将数据标准化为天底反射值的经验方法消除。此外,对于在低当地太阳高度角下照射的崎岖地形区域,这些影响也会发挥作用,并且可以通过 ATCOR 包中包含的经验方法来处理。
摘要 随着当代技术的发展,情感和氛围研究也开始复兴。尽管有人批评氛围是一种分散且“毫无根据”的理论,但本研究显示,它对科学、艺术和技术等多个领域来说都是一个有前途的概念。本文最感兴趣的是空间艺术领域,特别关注声音和光的情感维度。除了强调后者的物质品质以及感觉和情感之外,当前的研究还将追踪这些“大气”成分与音量和强度之间的相关性。除了对新唯物主义等主流理论方法进行批判外,氛围还被认为是可以通过技术再现和调节的情感品质。因此,“大气”的概念不仅可以“设定”地域气候,还可以作为由声音和感觉组成的大气建筑的支架:充满活力、流畅、诗意,但又是物质的。
主持人:Tim Fout(DOE-FECM)3:15 - 3:35 PM谈话:预测的硝基胺和硝胺浓度的敏感性对模型在ADMS6 Brian Dinkelacker(ExxonMobil)(ExxonMobil)中的输入参数的敏感性3:35 - 4:00 PM谈话:环境和健康风险评估:环境和健康风险评估非COPS/COP)。 Higuchi (EPA/ORD) and Brian Shrager (EPA/OAQPS) 4:00 – 4:25 PM Talk: Evaluation of Atmospheric Chemistry and Dispersion Models Clint Tillerson (EPA/OAQPS) and Rob Pinder (EPA/ORD) 4:25 – 4:50 PM Case-Study: Measurements and Modelling of Non-CO 2 Emissions from Different Amine-based CO 2 Capture Plants in Australia, Norway, Canada and China商品Azzi(气候变化,能源,环境与水,澳大利亚政府)4:50 - 5:00 PM结束言论和休会
A. Goffin、J. Griff-McMahon、I. Larkin 和 HM Milchberg * 马里兰大学电子与应用物理研究所,马里兰州帕克分校,20742,美国 *milch@umd.edu 大气气溶胶(例如雾中的水滴)会通过散射和吸收干扰激光传播。飞秒光学细丝已被证明可以清除雾区,从而改善后续脉冲的传输。但详细的除雾机制尚未确定。在这里,我们直接测量和模拟半径约为 5 μm 的水滴(典型的雾)在飞秒细丝特有的光学和声学相互作用影响下的动态情况。我们发现,对于由准直近红外飞秒脉冲崩溃产生的细丝,主要的液滴清除机制是激光光学破碎。对于此类细丝,由细丝能量沉积在空气中发射的单周期声波不会影响液滴,也不会引起可忽略的横向位移,因此对雾的清除作用也微乎其微。只有当非细丝脉冲的聚焦程度很高时,局部能量沉积远远超过细丝,声波才会显著取代气溶胶。
2014 年,LASP 与阿联酋穆罕默德·本·拉希德航天中心 (MBRSC) 合作开发了阿联酋火星任务 (EMM)。该实验室与阿联酋管理人员、工程师、科学家和任务运营商合作开发、建造和操作该任务的希望号航天器。LASP 与 MBRSC、亚利桑那州立大学和加州大学伯克利分校的空间科学实验室合作,开发并建造了三种科学仪器:阿联酋火星紫外光谱仪 (EMUS)、阿联酋探测成像仪 (EXI) 和阿联酋火星红外光谱仪 (EMIRS)。EMM 于 2020 年 7 月 19 日从日本发射,并于 2021 年 2 月 9 日进入火星轨道。
气候行动是实现可持续发展的关键要素之一。在高空测量上述大气参数可以做出更好的预测。通过使用纳米卫星,可以记录这些参数,甚至可以计算出来。实时数据可以快速提供给用户进行进一步分析。CANSAT 可能是一种纳米卫星,集成在小罐子的数量和形状中。我们的挑战是将卫星中发现的所有主要子系统(如电源系统、传感器和通信系统)装入这个最小体积中。然后,CANSAT 通过火箭发射到几百米的高度,进行科学实验,并使用降落伞安全着陆。Arduino 是一个开源、易于使用的硬件和软件。LoRa SX1278 Ra-02 模块用作从太空到地面站通信的发射器和接收器。记录的数据还存储在 SD 卡模块中。CANSAT 必须开发成能够在几百米的空中维持一段时间。它使用 9v 电源。整个系统的设计目标是确保负载不超过 500 克。CANSAT 系统中使用的模块非常灵敏,可以监测大气参数的最小变化。
过去几十年来,技术的飞速发展为我们提供了前所未有的大量关于我们自己和地球的数据。太空平台成本的降低、微电子革命和计算机能力的近乎指数级的增长,为我们探索和了解周围的世界创造了新的机会。工具和理论方法仍在开发中,这些工具和理论方法能够将我们从所有这些新数据流中获得的所有见解整合到一个多学科框架中。因此,我们面临着一个独特的挑战,同时也是一个在许多科学领域取得重大进展的机会,首先是大气和气候科学。我们很高兴在此宣布推出《大气科学与技术公报》(BAST),这是一本新的同行评审期刊,旨在弥补大气科学领域这一空白。该期刊鼓励采用跨学科方法,重点关注新的传感器技术和系统、综合观测和建模技术、创新的数值方法、数据分析和检索技术。 BAST 提供了一个分享新想法和新发展的平台,以促进针对城市、沿海、海洋、农村和山区环境的研究活动。将特别关注跨学科研究,特别是那些涉及公民收集众包数据的研究,以及那些致力于表征不确定性和方法同质化的研究。BAST 旨在使用观察和建模方法连接天气和气候社区,创建一个举办讨论和头脑风暴活动的论坛。该期刊还希望吸引报告其他科学领域的方法或技术的投稿,这些方法或技术可以应用于大气科学,以及讨论技术发展及其科学和社会影响的投稿。从这个意义上说,BAST 将提供一个新平台来支持技术革命,以实现