前瞻性陈述涉及已知和未知的风险和不确定性,因为它们与未来可能发生或不可能发生的事件有关,并取决于可能超出 Atom 控制范围的情况。前瞻性陈述反映了 Atom 对未来事件的当前看法,并不保证未来的业绩。许多因素可能导致 Atom 的实际业绩与此类前瞻性陈述表达或暗示的预期业绩存在重大差异。其中一些因素在本年度报告中有更详细的描述。此外,即使经营业绩、财务状况、流动性、前景、增长、战略、股息政策及其打算经营的行业的发展与本年度报告中的前瞻性陈述一致,这些结果或发展也可能无法代表后续期间的结果或发展。
一些样品,如强酸(强磺酸)将产生–ve 离子光谱比 FAB 中的 +ve 离子光谱更好(此处为伪分子离子是去质子化物质 [M 分子离子是去质子化物质 [MH] H] --
摘要 — 原子探针断层扫描是唯一能够以亚纳米分辨率测量所有化学元素的三维空间分布而不受质量或原子序数限制的技术。该技术在各种半导体器件的开发中发挥着重要作用。然而,在世界最发达地区之外,它仍然鲜为人知。考虑到这一点,本文旨在向巴西微电子学会介绍和讨论原子探针断层扫描技术,更重要的是,讨论它对纳米级器件开发的影响。首先,我们介绍原子探针断层扫描的工作原理和实验程序。接下来,我们介绍一些该技术在设备开发中应用的真实例子。最后,我们简要讨论了一个尚未实现的应用的可能性,即亚单层量子点的原子探针断层扫描。
;路易吉·卡恰普蒂;塞尔吉奥·卡拉特罗尼;本杰明·卡努埃尔;基娅拉·卡普里尼;安娜·卡拉梅特;劳伦蒂乌卡拉梅特;马泰奥·卡莱索;约翰·卡尔顿;马特奥·卡萨列戈;瓦西利斯·查曼达里斯;陈玉傲;玛丽亚·路易莎·基奥法洛;阿莱西娅·辛布里;乔纳森·科尔曼;弗洛林·卢西安·康斯坦丁;卡洛·R·孔塔尔迪;崔亚欧;埃莉莎·达罗斯;加文·戴维斯;埃丝特·德尔·皮诺·罗森多;克里斯蒂安·德普纳;安德烈·德列维安科;克劳迪娅·德·拉姆;阿尔伯特·德罗克;丹尼尔·德尔;法比奥·迪·庞波;戈兰·S·乔尔杰维奇;巴贝特·多布里希;彼得·多莫科斯;彼得·多南;迈克尔·多瑟;扬尼斯·德鲁加基斯;雅各布·邓宁安;阿利舍尔·杜斯帕耶夫;萨扬·伊索;约书亚·伊比;马克西姆·埃夫雷莫夫;托德·埃克洛夫;格德米纳斯·埃勒塔斯;约翰·埃利斯;大卫·埃文斯;帕维尔·法捷耶夫;马蒂亚·法尼;法里达·法西;马可·法托里;皮埃尔·费耶;丹尼尔·费莱亚;冯杰;亚历山大·弗里德里希;埃琳娜·福克斯;纳瑟尔·加鲁尔;高东风;苏珊·加德纳;巴里·加勒威;亚历山大·高格特;桑德拉·格拉赫;马蒂亚斯·格瑟曼;瓦莱丽·吉布森;恩诺·吉斯;吉安·F·朱迪斯;埃里克·P·格拉斯布伦纳;穆斯塔法·京多安;马丁·哈内尔特;蒂莫·哈库利宁;克莱门斯·哈默勒; Ekim T. Hanımeli;蒂芙尼·哈特;莱昂妮·霍金斯;奥雷利恩·希斯;杰瑞特·海斯;维多利亚·A·亨德森;斯文·赫尔曼;托马斯·M·赫德;贾森·M·霍根;博迪尔·霍尔斯特;迈克尔·霍林斯基;卡姆兰·侯赛因;格雷戈尔·詹森;彼得·耶格利奇;费多·耶莱兹科;迈克尔·卡根;马蒂·卡利奥科斯基;马克·卡塞维奇;亚历克斯·凯哈吉亚斯;伊娃·基利安;苏门·科利;贝恩德·康拉德;约阿希姆·科普;格奥尔吉·科尔纳科夫;蒂姆·科瓦奇;马库斯·克鲁兹克;穆克什·库马尔;普拉迪普·库马尔;克劳斯·拉默扎尔;格雷格·兰茨伯格;迈赫迪·朗格卢瓦;布莱尼·拉尼根;塞缪尔·勒鲁什;布鲁诺·莱昂内;克里斯托夫·勒庞西·拉菲特;马雷克·莱维奇;巴斯蒂安·莱考夫;阿里·莱泽克;卢卡斯·隆布里瑟; J.路易斯·洛佩兹·冈萨雷斯;埃利亚斯·洛佩兹·阿萨马尔;克里斯蒂安·洛佩斯·蒙哈拉兹;朱塞佩·加埃塔诺·卢西亚诺;马哈茂德;阿扎德·马勒内贾德;马库斯·克鲁兹克;雅克·马托;迪迪埃·马索内特;阿努帕姆·马宗达尔;克里斯托弗·麦凯布;马蒂亚斯·梅斯特;乔纳森菜单;朱塞佩·梅西尼奥;萨尔瓦多·米卡利齐奥;彼得·米林顿;米兰·米洛舍维奇;杰里迈亚·米切尔;马里奥·蒙特罗;加文·W·莫利;尤尔根·穆勒; Özgür E. Müstecapl ioğlu ;倪伟头 ;约翰内斯·诺勒;塞纳德·奥扎克;丹尼尔 KL 爱;亚西尔·奥马尔;朱莉娅·帕尔;肖恩·帕林;索拉布·潘迪;乔治·帕帕斯;维奈·帕里克;伊丽莎白·帕萨坦布;埃马努埃莱·佩鲁基;弗兰克·佩雷拉·多斯桑托斯;巴蒂斯特·皮斯特;伊戈尔·皮科夫斯基;阿波斯托洛斯·皮拉夫齐斯;罗伯特·普朗克特;罗莎·波贾尼;马可·普雷维德利;朱莉娅·普普蒂;维什努普里亚·普蒂亚·维蒂尔;约翰·昆比;约翰·拉菲尔斯基;苏吉特·拉詹德兰;恩斯特·M·拉塞尔;海法 雷杰布·斯法尔 ;塞尔日·雷诺;安德里亚·里查德;坦吉·罗津卡;阿尔伯特·鲁拉;扬·鲁道夫;迪伦·O·萨布尔斯基;玛丽安娜·S·萨夫罗诺娃;路易吉·圣玛丽亚;曼努埃尔·席林;弗拉基米尔·施科尔尼克;沃尔夫冈·P。施莱希;丹尼斯·施利珀特;乌尔里希·施奈德;弗洛里安·施雷克;克里斯蒂安·舒伯特;尼科·施韦森茨;阿列克谢·谢马金;奥尔加·塞尔吉延科;邵丽静;伊恩·希普西;拉吉夫·辛格;奥古斯托·斯梅尔齐;卡洛斯·F·索普尔塔;亚历山德罗·DAM·斯帕利奇;佩特鲁塔·斯特凡内斯库;尼古拉斯·斯特吉乌拉斯;扬尼克·斯特罗勒;克里斯蒂安·斯特鲁克曼;西尔维娅·坦廷多;亨利·斯罗塞尔;古列尔莫·M·蒂诺;乔纳森·廷斯利;奥维迪乌·廷塔雷努·米尔恰;金伯利·特卡尔切克;安德鲁. J.托利;文森扎·托纳托雷;亚历杭德罗·托雷斯-奥胡埃拉;菲利普·特罗伊特兰;安德里亚·特罗姆贝托尼;蔡玉岱;克里斯蒂安·乌弗雷希特;斯特凡·乌尔默;丹尼尔·瓦鲁克;维尔·瓦斯科宁;维罗尼卡·巴斯克斯-阿塞韦斯;尼古拉·V·维塔诺夫;克里斯蒂安·沃格特;沃尔夫·冯·克利青;安德拉斯·武基奇斯;莱因霍尔德·瓦尔泽;王金;尼尔斯·沃伯顿;亚历山大·韦伯-日期;安德烈·温兹劳斯基;迈克尔·维尔纳;贾森·威廉姆斯;帕特里克·温德帕辛格;彼得·沃尔夫;丽莎·沃尔纳;安德烈·雪雷布;穆罕默德·E·叶海亚;伊曼纽尔·赞布里尼·克鲁塞罗;穆斯林扎雷;詹明生;林周;朱尔·祖潘;埃里克·祖帕尼奇
J. Tolley;酷刑文森特;亚历杭德罗·托雷斯·奥古拉; Treutlein Philipp;安德里亚长号; Yu-dai Tsai; Uphrecht Christian; Stefan Ulmer;丹尼尔·瓦卢克(Daniel Valuch);村庄的巴斯科宁; Veronica-Accesses; Nicholay V. Vitanov; Vogt Christian;沃尔夫·冯·攀登; AndrásVukics; Reinhold Walser;金·王(Jin Wang);伍兹·沃伯顿(Woods Warburton);韦伯日期亚历山大;安德鲁·恩兹劳斯基(Andrew Wnzlawski);迈克尔·沃纳(Michael Werner);杰森·威廉姆斯;帕特里克·温德斯特(Patrick Windpassinger);彼得·沃尔夫;丽莎·沃纳(Lisa Woerner);安德鲁穆罕默德·雅希亚(Mohamed E. Yahia); Emmanuel Zembrini Cross;穆斯林·扎里(Moslem Zarei);明朗Zhan;林周; Jure Zupan; ErikZupanič
近十年来,有两项突破性技术在里德堡量子计算研究中发挥了重要作用,影响了该领域目前取得的显著进展。第一项是里德堡阻塞效应[1-3],它使得中性原子的纠缠成为全球原子量子研究中的日常工具;第二项是原子重排方法[4-6],该方法利用一组可移动的光镊构建无缺陷的任意原子图,如图1所示。这里我们使用术语里德堡原子图,因为构建的原子阵列的可能几何形状不仅限于物理三维空间中的晶体结构,而更适合用数学图形来表示,数学图形是超几何空间中的顶点和边的集合。在这方面,一般形式的里德堡原子系统可以称为里德堡原子图(或简称里德堡图)。
中性原子系统长期以来一直是复杂量子物理的试验台。最近,量子研究的焦点已从基础科学转向量子计算应用。尽管几种不同的硬件平台已在此方向的能力方面取得了长足进步,但每种平台在扩展系统规模方面都有各自的障碍:无论是物理上的量子比特数,还是时间上的退相干前的代码周期。具体而言,在中性原子系统中,缺乏以比原子退相干快得多的时间尺度无损读取原子状态的能力。通过将中性原子里德堡阵列的几何可重构性和设计的强相互作用与高精细度腔的强光耦合相结合,我们可以构建一种超越其他硬件系统许多限制的新量子架构。在本论文中,我们阐述了将里德堡原子阵列耦合到腔体的情况,讨论了原子物理与量子计算之间的联系,以及使光腔系统比其他当前量子计算机实现更具优势的基本物理原理。然后,我们描述了这种系统的设计、测试和实现。我们的系统同时适应里德堡激发、可重构光镊阵列、选择性原子态寻址和与光腔的强耦合。我们详细讨论了在超高真空中安装这种系统的风险和技术考虑,包括发现一种新的高反射率镜材料失效机制。最后,我们概述了未来的具体步骤,以展示我们系统中的原理验证表面码纠错,为使用中性原子进行容错量子计算铺平道路。
TiNiCu 0.1 Sn HH 合金(即 Ti 32.8 -Ni 32.8 -Sn 32.8 -Cu 1.6)的微观结构。主要动机