高斯相关性出现在一大批从平衡中淬灭的多体量子系统中,如最近在耦合的一维超级流体的实验中所证明的[Schweigler等。,nat。物理。17,559(2021)]。在这里,我们提出了一种机制,通过该机制,rydberg原子阵列的初始状态可以在全局淬火后保留持续的非高斯相关性。该机制基于植根于系统基态对称性的有效动力学阻滞,从而防止了淬灭哈密顿量下的疗法动力学。我们提出了如何使用Rydberg Atom实验观察这种影响,并证明了其在几种类型的实验误差方面的韧性。由于受保护的非高斯远离平衡,这些长寿的非高斯州可能将实际应用作为量子记忆或稳定资源用于量子信息方案。
YAO 会议是一个历史悠久的年度国际会议。自 1995 年以来,它一直由欧洲许多不同科学机构的学生组织。它是原子和分子光学领域最大的学生会议。YAO 会议的主要目标是加强该领域年轻学生之间的科学交流,以创建一个强大的国际社区。它旨在为参与者提供一个最佳平台,让他们能够广泛了解最先进的研究,扩大他们的网络并在世界各地建立新的联系,对许多人来说,这也是他们第一次展示自己的成果并与同行讨论。今年,YAO 将于 6 月 30 日至 7 月 5 日在斯特拉斯堡大学的欧洲量子科学中心 (CESQ) 举行,这是第 29 届。作为本届 YAO 的组织者,我们很高兴欢迎您,并祝您有一个充实的体验! 谨致问候,YAO 组织委员会
模拟多体费米子系统的特性是材料科学、量子化学和粒子物理学领域一项突出的计算挑战。尽管基于量子比特的量子计算机可能比传统设备更有效地解决这一问题,但编码非局部费米子统计数据会引入所需资源的开销,从而限制其在近期架构中的适用性。在这项工作中,我们提出了一种费米子量子处理器,其中费米子模型在费米子寄存器中局部编码,并使用费米子门以硬件高效的方式进行模拟。我们特别考虑了可编程镊子阵列中的费米子原子,并开发了不同的协议来实现非局部门,从而在硬件级别保证费米统计数据。我们使用这个门集以及里德堡介导的相互作用门,为数字和变分量子模拟算法找到有效的电路分解,这里以分子能量估计为例进行说明。最后,我们考虑一种组合费米子量子比特架构,其中利用原子的运动自由度和内部自由度来有效地实现量子相位估计以及模拟格点规范理论动力学。
这项研究介绍了一种新颖的解决方案,用于设计结构化催化剂,将单件3D打印与单原子催化整合。结构化催化剂在工业过程中广泛使用,因为它们提供了最佳的质量和传热,从而导致更有效地使用催化材料。它们是使用陶瓷或金属物体制备的,然后将其洗净并用催化活性层浸渍。但是,这种方法可能导致后者的粘附问题。通过采用光聚合印刷,稳定而活跃的单原子催化剂直接形成了独立的单件结构材料。本研究中采用的表征方法的电池可以证实催化活性物质的均匀分布和材料的结构完整性。计算流体动力学模拟用于证明结构化体内的动量传递和光分布增强。材料在连续流化的苄醇对苯甲醛的连续光催化氧化中进行了最终评估,这是准备生物质衍生的构建块的相关反应。本文报告的创新方法是生产结构化的单原子催化剂,可以规定传统合成方法的复杂性,可扩展性和效率提高,并突出了3D打印在催化工程中的变革性作用,以革新催化剂的设计。
量子自旋液体是物质的外来阶段,其低能物理学被描述为新兴仪表理论的解构相。通过最新的理论建议和一个实验,显示了z 2拓扑顺序的初步迹象[G. Semeghini等。,Science 374,1242(2021)],Rydberg Atom阵列已成为实现量子自旋液体的有前途的平台。在这项工作中,我们提出了一种在三个空间维度中实现U(1)量子旋转液体的方法,这是由pyrochlore lattice rydberg rydberg原子阵列中的U(1)量规理论的解缩相描述的。我们研究了拟议的Rydberg系统的基态相图作为实验相关参数的函数。在我们的计算中,我们发现通过调整拉比频率,可以访问由“磁性”单极子的扩散和HIGGS转变驱动的限制 - 限制过渡,以及由出现量规理论的“电动”电荷驱动的。我们建议将解剖相和有序相区分的实验探针。这项工作是在基于Rydberg的量子模拟器上三个空间维度中访问限制性转换的建议。
抽象原子干涉仪在过去的三十年中已经开发为研究重力的新功能工具。它们用于测量重力加速度,重力梯度和重力曲率曲率,以确定在显微镜距离处的重力研究,以测试重力在显微镜距离处的重力原理,以测试重力原理,以探测一般性和量化性的量化量和量化性的量化性,以探测量化的量化和量化性的量化性,以探测量化性的量化和量化性的量化性,以量化量化和量化性的量化性,以量化量化性,以量化量化性,以量化量化性和量化性。暗能量,并被提出为观察引力波的新探测器。在这里,我描述了过去和正在进行的实验,对我认为这是该领域的主要前景以及寻找新物理学的潜力。
原子干涉法是一种高度精确的惯性传感技术(Kasevich等,1991)。可以通过一系列激光脉冲询问免费的原子波包,可以提取有关加速度和转弯速率的信息,从而计算完整的导航解决方案(位置,速度和态度)。Applications of this technique for accelerometers (Barrett et al., 2014 ), gyroscopes (Gauguet et al., 2009 ; Schubert et al., 2021 ), and complete inertial measurement units (IMUs) (Gebbe et al., 2021 ; Gersemann et al., 2020 ) based on Bose–Einstein condensates are currently under research.惯性导航1小时后的潜在位置精度达到5 m(Jekeli,2005年),这使原子干涉法成为全球导航卫星系统(GNSS)遭受重复环境的高度有希望的技术。
在量子处理器中,在所需量子比特之间设计并行、可编程操作的能力是构建可扩展量子信息系统的关键 1,2 。在大多数最先进的方法中,量子比特在本地交互,受与其固定空间布局相关的连接的限制。在这里,我们展示了一种具有动态、非局部连接的量子处理器,其中纠缠的量子比特在两个空间维度上以高度并行的方式在单量子比特和双量子比特操作层之间相干传输。我们的方法利用光镊捕获和传输的中性原子阵列;超精细态用于稳健的量子信息存储,激发到里德堡态用于纠缠生成 3–5 。我们使用这种架构来实现纠缠图状态的可编程生成,例如簇状态和七量子比特 Steane 码状态 6,7 。此外,我们穿梭纠缠辅助阵列,以实现具有十三个数据和六个辅助量子比特的表面代码状态 8 以及具有十六个数据和八个辅助量子比特 9 的环面上的环面代码状态。最后,我们利用这种架构实现了混合模拟 - 数字演化 2 ,并将其用于测量量子模拟中的纠缠熵 10-12 ,通过实验观察与量子多体疤痕相关的非单调纠缠动力学 13,14 。这些结果实现了长期目标,为可扩展量子处理提供了一条途径,并实现了从模拟到计量的各种应用。
里德堡原子拥有远离原子阳离子的高度激发价电子。[1,2] 与基态原子相比,它们表现出夸张的特性,例如非常大的电偶极矩,这可以促进与宏观外部场甚至来自附近粒子的微观电磁场的强烈相互作用。这些相互作用可以通过静态电场或磁场、激光或微波场来控制,使里德堡原子系统成为实现可控量子多体模拟器的理想选择。过去几十年来,在中性原子系统方面取得了令人瞩目的实验进展,包括超冷原子气体的制备[3,4]、单原子的高分辨率成像[5,6]、可重构光镊阵列中单个原子的捕获[7-9],高激发里德堡态的迷人特性被令人信服地揭示出来,使其成为最受欢迎的中性原子量子信息处理 (QIP) 平台。大量 QIP 涉及量子计算和量子模拟,旨在解决传统计算机难以解决的复杂问题。为实现量子计算和量子模拟而寻求的物理候选物范围包括
开发替代计算平台一直是物理学的一个长期目标,随着传统晶体管接近微型化极限,这成为一个特别紧迫的问题。一个潜在的替代范式是储存器计算,它利用未知但高度非线性的输入数据转换来执行计算。这样做的好处是,许多物理系统恰好表现出作为储存器所必需的非线性输入输出关系类型。因此,阻碍硅电子学进一步发展的量子效应成为储存器计算机的优势。在这里,我们证明,即使是物质的最基本成分——原子——也可以充当计算的储存器,其中所有输入输出处理都是光学的,这要归功于高次谐波产生 (HHG) 现象。提出了一种用于分类问题的单原子计算机原型,其中分类模型被映射到全光学设置,并选择线性滤波器以对应于训练模型的参数。我们通过数字证明,这种“全光学”计算机可以成功执行分类任务,并且其准确度在很大程度上取决于动态非线性。这可能为开发千兆赫信息处理平台铺平道路。