博士后位置材料科学与工程系的财产单位,KTH皇家理工学院,寻求一名在Atom Probe层析成像(APT)任职两年的博士后研究员。Hultgren实验室(www.kth.se/hultgrenlab)是KTH的中央研究机构,位于MSE部门,最近在实验室中建立了一个Cameca Eikos-UV APT,这位博士后研究员被招募,以进一步加强对Steels的Apt Steels研究。博士后研究人员将进行自己的研究,该研究与微观结构特征,例如降水,隔离,杂质,并开发用于高强度钢中的氢映射方案。这些方面是开发下一代绿色钢的关键。DIV DOC将与该部门的其他研究人员以及工业合作伙伴合作。此外,该职位还意味着博士后研究人员将成为Hultgren Lab APT团队的一部分,并支持其他研究人员和学生在大约10%的时间内具有适当专业知识的研究人员。
冷原子干涉测量法的最新进展为量子惯性传感器的太空应用铺平了道路,随着太空中可进行的更长询问时间,量子惯性传感器的稳定性预计会大幅提高。本研究开发了一种马赫-曾德尔型冷原子加速度计的在轨模型。在不同的定位和旋转补偿方法假设下进行了性能测试,并评估了各种误差源对仪器稳定性的影响。本文讨论了空间原子干涉测量法的当前和未来进展,并从三种不同情景下研究了它们对卫星重力任务中量子传感器性能的影响:最先进情景(预计 5 年内准备好发射)、近期(预计在未来 10 到 15 年内发射)和远期情景(预计在未来 20 到 25 年内发射)。我们的结果表明,通过将静电加速度计放置在卫星的质心处,将量子加速度计放置在卫星的横向轨道轴上,可以实现最高灵敏度。我们表明,使用目前最先进的技术可以实现接近 5 10 10 m/s 2 / ffiffiffiffiffiffiffi Hz p 的灵敏度水平。我们还估计,在不久的将来和遥远的将来,太空中的原子干涉测量法预计将分别达到 1 10 11 m/s 2 / ffiffiffiffiffiffiffi Hz p 和 1 10 12 m/s 2 / ffiffiffiffiffiffi Hz p 的灵敏度水平。考虑到未来的量子加速度计的技术能力,提出了原子干涉测量法改进路线图,以最大限度地提高其性能。最后,讨论了在未来太空任务中使用超灵敏原子干涉测量法的可能性和挑战。2024 COSPAR。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要本文研究了一个四级三脚架原子系统的相互作用动力学,该系统耦合到Kerr-Medium内的Q呈现的二项式场状态。相互作用模型结合了时间依赖性耦合参数和引人入胜的参数,为描述原子野外相互作用提供了更适应性的框架。特别的重点放在研究Q的形式,时间依赖性耦合参数,失调参数和KERR非线性如何影响系统的保真度属性和线性熵动力学。我们的结果表明,所考虑的参数的影响对原子场纠缠和忠诚有重大影响。这些发现提供了对受控量子系统的宝贵见解,并具有量子信息处理和非线性量子光学器件中的潜在应用。
ATOM 1 N ARG A 1 0.000 0.000 0.000 ATOM 2 CA ARG A 1 1.460 0.000 0.000 ATOM 3 C ARG A 1 2.160 1.370 0.000 ATOM 4 O ARG A 1 2.160 2.170 -1.080 ATOM 5 CB ARG A 1 2.090 -1.180 -0.670 ATOM 6 CG ARG A 1 2.790 -2.440 0.110 ATOM 7 CD ARG A 1 3.420 -3.620 -0.560原子8 NE ARG A 1 4.120 -4.880 0.220 ATOM 9 CZ ARG A 1 4.750 -5.170 1.380 1.380 ATOM 10 NH1 ARG A 1 4.750 -4.450 -4.450 2.450 2.490 ATOM 11 NH2 ATOM 11 NH2 ARG A 1 5.350 -6.340 1.550 1.550 1.550 1.550 1.550
ATOM 1 N ARG A 1 0.000 0.000 0.000 ATOM 2 CA ARG A 1 1.460 0.000 0.000 ATOM 3 C ARG A 1 2.160 1.370 0.000 ATOM 4 O ARG A 1 2.160 2.170 -1.080 ATOM 5 CB ARG A 1 2.090 -1.180 -0.670 ATOM 6 CG ARG A 1 2.790 -2.440 0.110 ATOM 7 CD ARG A 1 3.420 -3.620 -0.560原子8 NE ARG A 1 4.120 -4.880 0.220 ATOM 9 CZ ARG A 1 4.750 -5.170 1.380 1.380 ATOM 10 NH1 ARG A 1 4.750 -4.450 -4.450 2.450 2.490 ATOM 11 NH2 ATOM 11 NH2 ARG A 1 5.350 -6.340 1.550 1.550 1.550 1.550 1.550
ATOM 1 N ARG A 1 0.000 0.000 0.000 ATOM 2 CA ARG A 1 1.460 0.000 0.000 ATOM 3 C ARG A 1 2.160 1.370 0.000 ATOM 4 O ARG A 1 2.160 2.170 -1.080 ATOM 5 CB ARG A 1 2.090 -1.180 -0.670 ATOM 6 CG ARG A 1 2.790 -2.440 0.110 ATOM 7 CD ARG A 1 3.420 -3.620 -0.560原子8 NE ARG A 1 4.120 -4.880 0.220 ATOM 9 CZ ARG A 1 4.750 -5.170 1.380 1.380 ATOM 10 NH1 ARG A 1 4.750 -4.450 -4.450 2.450 2.490 ATOM 11 NH2 ATOM 11 NH2 ARG A 1 5.350 -6.340 1.550 1.550 1.550 1.550 1.550
预测催化活性的最广泛使用的方法是密度功能理论,其结果依赖于所采用的交换相关功能。在这项工作中,研究了功能在预测氢和氧气进化反应(她和OER)中单原子催化剂(SAC)活性中所起的作用。16嵌入在N掺杂石墨烯中的过渡金属(TM)原子进行模拟,并评估了针对混合PBE0功能的广泛采用的Perdew-Burke-ernzerhof(PBE)功能的性能。PBE + U方法也是一种计算上不太复杂的方法,用于纠正密度功能理论中的自我交互误差。对于第一行TM,即3D系统,使用PBE获得的预测与PBE0有很大的偏差,而对于4D和5D系列而言,发现了较小的偏差。PBE + U结果代表了对PBE的改进,尽管仍然存在PBE0的某些差异。这项研究强调了DFT功能在筛选新催化剂和预测催化活性方面的重要性。对于4D和5D金属,PBE的使用似乎可以接受,而在3D系统的情况下,建议使用PBE + U或PBE0方法,特别是对于磁接地态。
真正的北方强大而自由!加拿大啊,我们从四面八方为你站岗。上帝保佑我们的土地光荣而自由!哦,加拿大,我们为你站岗,哦,加拿大,我们为你站岗。
在本文中,研究了25种苯酚和邻苯二甲胺-N-氧基自由基(Pino C)和DPPH C之间的HAT反应。在这项工作中检查的酚和自由基的父结构和标记在方案1中显示了。包括天然酚类的活化酚的Ch 3 Cn中的时间分解动力学研究(2,6-二甲基,2,6-二 - 二 - 丁基-4-取代15,16和4-构酚酚)17(1H - 18H)17(1H - 18H),氢酚类酚类和酚类酚类18(19H) eic酸(23H),2,2,5,7,8-五甲基甲基chroman-6- OL(PMC,24H)16和带有放射线的A托酚(A-TocoH,25H)19。 在先前的工作中,8,20 - 24个四个物理参数,h-donor XH的四个物理参数,键解离能d g o(XH),动力学固有电阻能量d g s xh/x,热运动参数d g s o(xh)和d g s o(x)和d g s o(x)已用于评估h-含量和h- themist of xh的XH XH和XH的XH XH XH,并在XH中进行了启用。和实际的帽子反应。 d g o(XH)是热力学因素,通常用于评估XH和H-抽象能力的潜在H含能力。 d g s xh / x是XH(XH + X / X + XH)自交换HAT反应的激活自由能。 这是帽子反应的动力学抗性,因为热纳米驱动力为零,这意味着动力学内在包括天然酚类的活化酚的Ch 3 Cn中的时间分解动力学研究(2,6-二甲基,2,6-二 - 二 - 丁基-4-取代15,16和4-构酚酚)17(1H - 18H)17(1H - 18H),氢酚类酚类和酚类酚类18(19H) eic酸(23H),2,2,5,7,8-五甲基甲基chroman-6- OL(PMC,24H)16和带有放射线的A托酚(A-TocoH,25H)19。 在先前的工作中,8,20 - 24个四个物理参数,h-donor XH的四个物理参数,键解离能d g o(XH),动力学固有电阻能量d g s xh/x,热运动参数d g s o(xh)和d g s o(x)和d g s o(x)已用于评估h-含量和h- themist of xh的XH XH和XH的XH XH XH,并在XH中进行了启用。和实际的帽子反应。 d g o(XH)是热力学因素,通常用于评估XH和H-抽象能力的潜在H含能力。 d g s xh / x是XH(XH + X / X + XH)自交换HAT反应的激活自由能。 这是帽子反应的动力学抗性,因为热纳米驱动力为零,这意味着动力学内在包括天然酚类的活化酚的Ch 3 Cn中的时间分解动力学研究(2,6-二甲基,2,6-二 - 二 - 丁基-4-取代15,16和4-构酚酚)17(1H - 18H)17(1H - 18H),氢酚类酚类和酚类酚类18(19H) eic酸(23H),2,2,5,7,8-五甲基甲基chroman-6- OL(PMC,24H)16和带有放射线的A托酚(A-TocoH,25H)19。 在先前的工作中,8,20 - 24个四个物理参数,h-donor XH的四个物理参数,键解离能d g o(XH),动力学固有电阻能量d g s xh/x,热运动参数d g s o(xh)和d g s o(x)和d g s o(x)已用于评估h-含量和h- themist of xh的XH XH和XH的XH XH XH,并在XH中进行了启用。和实际的帽子反应。 d g o(XH)是热力学因素,通常用于评估XH和H-抽象能力的潜在H含能力。 d g s xh / x是XH(XH + X / X + XH)自交换HAT反应的激活自由能。 这是帽子反应的动力学抗性,因为热纳米驱动力为零,这意味着动力学内在包括天然酚类的活化酚的Ch 3 Cn中的时间分解动力学研究(2,6-二甲基,2,6-二 - 二 - 丁基-4-取代15,16和4-构酚酚)17(1H - 18H)17(1H - 18H),氢酚类酚类和酚类酚类18(19H) eic酸(23H),2,2,5,7,8-五甲基甲基chroman-6- OL(PMC,24H)16和带有放射线的A托酚(A-TocoH,25H)19。 在先前的工作中,8,20 - 24个四个物理参数,h-donor XH的四个物理参数,键解离能d g o(XH),动力学固有电阻能量d g s xh/x,热运动参数d g s o(xh)和d g s o(x)和d g s o(x)已用于评估h-含量和h- themist of xh的XH XH和XH的XH XH XH,并在XH中进行了启用。和实际的帽子反应。 d g o(XH)是热力学因素,通常用于评估XH和H-抽象能力的潜在H含能力。 d g s xh / x是XH(XH + X / X + XH)自交换HAT反应的激活自由能。 这是帽子反应的动力学抗性,因为热纳米驱动力为零,这意味着动力学内在包括天然酚类的活化酚的Ch 3 Cn中的时间分解动力学研究(2,6-二甲基,2,6-二 - 二 - 丁基-4-取代15,16和4-构酚酚)17(1H - 18H)17(1H - 18H),氢酚类酚类和酚类酚类18(19H) eic酸(23H),2,2,5,7,8-五甲基甲基chroman-6- OL(PMC,24H)16和带有放射线的A托酚(A-TocoH,25H)19。在先前的工作中,8,20 - 24个四个物理参数,h-donor XH的四个物理参数,键解离能d g o(XH),动力学固有电阻能量d g s xh/x,热运动参数d g s o(xh)和d g s o(x)和d g s o(x)已用于评估h-含量和h- themist of xh的XH XH和XH的XH XH XH,并在XH中进行了启用。和实际的帽子反应。d g o(XH)是热力学因素,通常用于评估XH和H-抽象能力的潜在H含能力。d g s xh / x是XH(XH + X / X + XH)自交换HAT反应的激活自由能。这是帽子反应的动力学抗性,因为热纳米驱动力为零,这意味着动力学内在
研究了激光波长对原子探针断层扫描(APT)中元素组成分析中精度的影响。系统比较了三种不同的商业原子探针系统 - LEAP 3000 x HR,LEAP 5000 XR和LEAP 6000 XR-用于研究较短激光波长的锡模型涂层,尤其是在深紫外线(DUV)范围内,对蒸发行为的影响。发现的结果表明,较短波长的使用提高了元素组成的准确性,而主潮具有相似的电场强度。因此,热效应减少,进而提高质量分辨能力。这项研究的一个重要方面包括估计不同工具的能量密度比。波长的降低伴随着由于激光斑点尺寸较小而导致的能量密度增加。此外,还研究了检测器技术的进步。最后,确定探测器的死时间,并评估了死区,以调查具有LEAP 6000 XR的氮化物测量中的离子堆积行为。