•探测器通常观察到闪烁光,电离,振动•仅在某些能量阈值之上可用的闪烁和电离•在弹性核后坐力,闪烁和电离中,闪烁和离子化是由于后退核与邻近的核之间碰撞而导致的,而在MIGDAL中,后退的原子ATOM ATOM ATOM ATOM ATMED/IRISID/IRISINED本身。这对于较小的能量是可能的
临床免疫学部门成员ÁlvaroFerreiraDra。ana camppar博士AnaLuísaMarçalAntónioLamasDra博士。 Cristiana Almeida Dra。 Graziela Carvalheiras教授ªIsabel Almeida Dr. Ivo Oliveira Dra博士。 ivoneValadãoDr.JoãoAraújoCorreiaDr. Marta Moura Dra。 Raquel Faria Dr. TeresaMendonçaTomásFonseca博士AnaLuísaMarçalAntónioLamasDra博士。Cristiana Almeida Dra。Graziela Carvalheiras教授ªIsabel Almeida Dr. Ivo Oliveira Dra博士。ivoneValadãoDr.JoãoAraújoCorreiaDr.Marta Moura Dra。 Raquel Faria Dr. TeresaMendonçaTomásFonseca博士Marta Moura Dra。Raquel Faria Dr.TeresaMendonçaTomásFonseca博士TeresaMendonçaTomásFonseca博士
解决过多的碳排放引起的严重环境问题,碳捕获,利用和储存技术(CCUS)已引起了广泛关注。1 - 3为了探索Co 2 Hydroge-nation对甲醇反应4,5的探索,目的是同时改善可再生能源的利用。目前,工业量表上的甲醇合成很大程度上取决于合成气的转化,该合成气体是CO和H 2的混合物,与少量CO 2促进了Cu/ZnO/ZnO/Al 2 O 3催化剂。尽管如此,基于Cu的催化剂对于反水 - 气体什叶派(RWG)反应显着活跃,导致甲醇选择性降低和催化剂失活,尤其是在相对较高的反应温度下。6 - 8
单原子催化剂(SAC)吸引了广泛的兴趣,以催化燃料电池和金属 - 空气电池中的氧气还原反应(ORR)。ever,具有高选择性和长期稳定性的SAC的发展是一个巨大的挑战。在这项工作中,碳空位修饰的Fe – N – C SAC(Fe H –N – C)实际上是通过微环境调制设计和合成的,可实现对活性位点的高效利用和电子结构的优化。Fe H –N-C催化剂表现出0.91 V的半波电势(E 1/2),足够的耐用性为100 000电压循环,具有29 mV E 1/2损失。密度功能理论(DFT)的计算证实,金属– N 4个位点周围的空缺可以减少OH*的吸附自由能,并阻碍金属中心的溶解,从而显着增强ORR动力学和稳定性。因此,在可充电锌 - 空气电池(ZABS)中,Fe H –N-C SAC在1200小时内提出了高功率密度和长期稳定性。这项工作不仅将通过金属– N 4个位点的合理调制来开发高度活跃和稳定的SAC,而且还可以深入了解电子结构的优化以增强电催化性能。
铽具有四种临床上可用于核医学的放射性核素:铽-149、铽-152、铽-155 和铽-161。它们相同的化学性质使得合成具有相同药代动力学特征的放射性药物成为可能,而它们独特的衰变特性使它们在成像和治疗应用中都很有价值。特别是,铽-152 和铽-155 分别是正电子发射断层扫描 (PET) 和单光子发射计算机断层扫描 (SPECT) 成像的有用候选物;而铽-149 和铽-161 分别用于 α - 和 β - -/俄歇电子疗法。这种独特的特性使铽族成为治疗诊断学“配对”原理的理想选择。本综述讨论了铽基放射性药物的优势和挑战,涵盖了从放射性核素生产到床边给药的整个过程。文中详细阐述了铽的基本特性、四种有趣的放射性核素的生产路线,并概述了可用的双功能螯合剂。最后,我们讨论了临床前和临床研究以及核医学领域这一有希望的发展前景。
标题:使用原子探针断层扫描摘要在材料中看到氢:金属材料中的氢存在可能导致灾难性的早期裂缝,称为氢含糖。观察氢及其在微观结构中相关的影响一直是一个巨大的挑战,它限制了解决该问题的解决方案。为此,我们的研究小组开发了一种特殊的工具,即低温原子探针断层扫描(Cryo-Apt),用于氢图,并将其与微力方法结合使用,以研究钢中的氢化含量。我们的努力为破译钢中的氢气诱捕和拥抱机制提供了新的见解,从而促进了钢微结构的发展,钢微结构具有良好的抵抗力。bio:Yi-Sheng(Eason)Chen博士是Nanyang助理教授(NAP)和新加坡国家研究基金会(NRF)材料科学与工程学院,Nanyang Technological University,新加坡(NTU)。他的研究重点是材料表征,冶金和氢技术。专门使用高级显微镜技术,例如原子探针断层扫描(APT)和电子显微镜来开发高级金属材料的结构属性处理关系。从这些努力中获得的见解将有助于更深入地了解材料行为,为发展下一代高性能材料的发展铺平道路。他是Sinica学术界物理研究所的前研究助理。 参考:[1] Y.-S. Chen等。他是Sinica学术界物理研究所的前研究助理。参考:[1] Y.-S. Chen等。“金属中的氢诱捕和覆盖 - 综述。”国际氢能杂志(印刷中)(2024年)。https://www.sciendirect.com/science/article/pii/s036031992401332 6
近年来,单个原子(SAS)的使用已成为光催化H 2代的迅速增长。在这里,Sa Noble金属(主要是PT SA)可以充当高度有效的共同催化剂。用最大分散的SA染色氧化物半导体表面的经典策略依赖于合适的贵金属配合物的“强静电吸附”(SEA)。在TIO 2的情况下 - 经典的基准光催化剂 - SEA需要吸附阳离子PT复合物,例如[(NH 3)4 pt] 2 +,然后对表面结合的SA进行热反应。虽然在文献中广泛使用,但在目前的工作中,直接比较表明,基于SAS的还原性锚定为基于六氯铂(IV)酸(H 2 PTCL 6)的反应性依恋,而与SAS相比,与SAS相比,SAS在构造中直接导致SAS - 最有效的活动 - 最有效的活动 - 最有效的活动 - PT加载且没有任何热沉积治疗。 总体而言,这项工作表明,反应性沉积策略优于经典的海洋概念,因为它提供了直接的电子连接的SA锚定,因此导致光催化中高度活跃的单原子位点。,但在目前的工作中,直接比较表明,基于SAS的还原性锚定为基于六氯铂(IV)酸(H 2 PTCL 6)的反应性依恋,而与SAS相比,与SAS相比,SAS在构造中直接导致SAS - 最有效的活动 - 最有效的活动 - 最有效的活动 - PT加载且没有任何热沉积治疗。总体而言,这项工作表明,反应性沉积策略优于经典的海洋概念,因为它提供了直接的电子连接的SA锚定,因此导致光催化中高度活跃的单原子位点。
动机:溶剂可访问的表面是与蛋白质结构和蛋白质功能相关的必不可少的结构特性度量。相对溶剂可访问区域(RSA)是描述蛋白质表面或蛋白质内部暴露程度的标准措施。但是,当残基信息缺失时,此计算将失败。结果:在本文中,我们提出了一种新型的E刺激方法,并使用了D E EP LEAN方法(Eagerer)。新方法,急切的,在两个独立的测试数据集上达到了Pearson相关系数为0.921–0.928。我们从经验上证明,与现有的RSA估计量相比,急切的人可以产生更好的皮尔森相关系数,例如协调数,半球体暴露和spherecon。据我们所知,狂热者代表了使用有限的信息和深度学习模型的有限信息来估算溶剂可访问区域的第一种方法。它可能对蛋白质结构和蛋白质功能预测有用。可用性和实现:该方法可以在https://github.com/cliffgao/eagerer上免费获得。联系人:gaojz@nankai.edu.cn补充信息:补充数据可在BioInformatics Online获得。
对于理解地壳形成[13–15]和磁性的起源具有重要意义。[16] 在法医学中,材料中的 18 O 测绘有助于追踪动物和人类的地理起源。[17] 在研究固体材料氧化机制的不同方法中,原位环境透射电子显微镜 (TEM) 和原位扫描隧道显微镜对于研究与氧化早期阶段相关的原子级结构变化非常有效。[1,3,5,18,19] 然而,这些原位技术缺乏区分单个氧同位素的灵敏度。同时,对氧同位素高度灵敏的纳二次离子质谱 (SIMS) 和其他基于质谱的技术缺乏 3D 亚纳米级的空间分辨率。 [14,17,20,21] 最近,非原位原子探针断层扫描 (APT) 研究验证了 APT 能够实现材料中 18 O 同位素分布的亚纳米级空间分辨映射。[10,22–25] 然而,将 APT 在亚纳米级空间分辨率下定量映射 18 O 的能力扩展到原位氧化研究尚未得到证实。在这里,我们首次展示了使用 18 O 同位素的原位 APT 分析模型 Fe-18 wt% Cr-14 wt% Ni 模型合金(以下称为 Fe18Cr14Ni)中的氧扩散
P 12 Theoretical and Experimental Insights Into Stimuli Responses of Two Isostructural Mofs Differing by a Single Atom ............................................................................................................................................................................................................................... Mazur, Bogdan Kuchta, Filip Formalik, Volodymyr Bon, Stefan Kaskel,Kornel Roztocki,Agnieszka Janiak