挑战:可扩展性(𝑁≤7)Babbush 等人,PRA 99 (2019);罗等人, npj Q. Inf. 5 (2019); Bentsen 等人, PRL 123 (2019); Kim 等人,PRB 101(2020); Wei 和 Sedrakyan,PRA 103 (2021); Jafferis 等人,Nature 612, 51 (2022); Kobrin 等人,arXiv:2302.07897
图2将Ni原子插入石墨烯晶格。a-b)HAADF-STEM图像显示了两个不同的宏伟概述的样品概述,显示了石墨烯表面形成的3-5 nm ni岛。在Ni岛之间还观察到单个Ni原子。c)石墨烯表面上的ni岛,经Ni L 23鳗鱼核心损失边缘证实。d- e)说明了梁拖动技术,其中电子束位于源材料上(d中的红色箭头的尾巴)),并拖动到原始的石墨烯(d中的红色箭头头))。此过程在ni原子附加到的石墨烯中创建点缺陷时,吐出了Ni源原子。iNSET在e)中显示了带有原子模型覆盖的主HAADF-STEM图像的傅立叶过滤版本,显示了Ni原子的位置。Ni原子位置表示单个和DI-VACACES的职业。f)几分钟的电子束暴露后,掺杂剂的较高分辨率图像。观察到的结构的原子模型被覆盖。g)-i)通过在Ni岛和原始石墨烯上扫描电子束来插入Ni原子的一个例子。最初,石墨烯的斑块没有掺杂剂;由于产生缺陷并将Ni原子从相邻的Ni岛散射到石墨烯上,Ni原子附着在缺陷位点上并掺入晶格中。随着越来越多的C原子从晶格中敲打,孔开始形成,Ni原子装饰边缘,i)。图像E-F)和H-I)使用PyCroscopicy中的原理分析过滤。60,61
在 MAIUS 探空火箭任务中 [ 1 ] 成功产生和研究了原子玻色-爱因斯坦凝聚态,以及在国际空间站 (ISS) 上持续运行的冷原子实验室 (CAL) 用户设施 [ 2 ] 表明,可以在自由落体实验装置中进行超冷原子物理研究。这些实验利用了真空室内自由演化的超冷原子与真空室本身之间不存在差异重力加速度的情况。也就是说,在没有任何故意施加的力的情况下,量子气体仍然惯性地限制在实验装置的观测体积内。在这些装置内进行的实验充分利用了微重力的特性,例如,可以长时间观测自由膨胀的玻色-爱因斯坦凝聚态气体,通过原子光学操控将这些气体的膨胀能量最小化到皮开尔文能量范围 [ 3 , 4 ]。其他实验则利用微重力为超冷原子施加新的捕获几何形状,即通过射频修整磁捕获势产生的球壳(气泡)势,否则这些原子会因重力下垂而严重扭曲 [ 5 ]。已经设想了一个针对微重力下超冷原子和分子气体的综合研究议程,这一愿景正在指导 CAL 及其潜在升级的开发,以及 NASA 和德国航天局 (DLR) 的玻色-爱因斯坦凝聚态和冷原子实验室 (BECCAL) 联合任务的开发 [ 6 ]。如其他地方所讨论的 [7],自由落体超冷原子实验装置中的无背景电位环境开辟了几个引人注目的研究方向。这些方向包括开发具有增强询问时间的原子干涉仪并利用惯性将物质波限制在物理对象附近的能力;研究相干原子光学,利用长时间追踪近单色物质波演化的能力;研究新型捕获几何中的标量玻色-爱因斯坦凝聚体;研究大型三维体积和均匀条件下的旋量玻色-爱因斯坦凝聚体和其他量子气体混合物;研究大范围内强相互作用的原子和分子量子气体
原子和分子参与的气相碰撞会引起许多重要的物理现象,如反应和能量传递。1 能量传递的截面和速率系数广泛应用于燃烧、2 星际介质 3 和大气等建模领域。4 由于离散内部能级、隧穿和碰撞共振等量子效应,准确描述碰撞动力学需要量子力学处理。这些量子效应在冷碰撞和超冷碰撞中尤为重要,有时甚至占主导地位,近年来,由于技术进步,冷碰撞和超冷碰撞引起了广泛关注。5–11 非反应 12,13 和反应碰撞的量子散射理论都取得了重大进展。14–21 然而,我们在描述散射动力学方面仍然存在重大差距。其中一个例子是对非反应
最小顶点着色问题 (MVCP) 在于用来自 C 的一种颜色为 G 的顶点着色,以尽量减少使用的颜色数量,同时确保没有两个相邻顶点具有相同的颜色。
2 里德伯原子 5 2.1 无场描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 21
1个国家主要实验室固化加工,西北理工大学,西安710072,中国Shaanxi。2高性能数值模拟与应用物理与计算数学研究所的CAEP软件中心,中国北京100088。3 CRRC Tangshan Co.,Ltd,Tangshan 063035,Hebei,中国。4西方超导技术有限公司,Xi'an 710018,Shaanxi,中国。5北京科学技术大学高级金属和材料的国家主要实验室,中国北京100083。6宾夕法尼亚州宾夕法尼亚州公园宾夕法尼亚州立大学材料科学与工程系,美国16802。 7创新中心,NPU重庆,重庆401135,中国。 8 XI'AN技术大学材料科学与工程学院,Xi'an 710048,Shaanxi,中国。6宾夕法尼亚州宾夕法尼亚州公园宾夕法尼亚州立大学材料科学与工程系,美国16802。7创新中心,NPU重庆,重庆401135,中国。8 XI'AN技术大学材料科学与工程学院,Xi'an 710048,Shaanxi,中国。8 XI'AN技术大学材料科学与工程学院,Xi'an 710048,Shaanxi,中国。
•通过无线电跟踪对航天器的轨道测定有助于测量天体的重力。•确定行星的内部组成(包括月亮)。•非重力力限制了重力恢复。•AI在板上航天器可以用作理想的测试质量,以消除此类干扰。•更好的行星科学(参见bepicolombo)
齐:[1] Xia…Saffman,PRL(2015); [2] Madjarov…Endres,Nat.物理(2020); [3] Levine…Lukin,PRL(2019); [4] Graham…Saffman,PRL(2019)少数/多数观点:Kaufman…Regal,Science(2014); Bayha…Jochim,《自然》(2020年); Bernien…Lukin,《自然》(2017 年),Léséleuc…Browaeys,《科学》(2019 年)