在1996年,NTRU首先是由Crypto'96 [1]的J. Ho Ff Stein,J。Pipher和J. Silverman引入的。然后,NTRU的开发人员对NTRU做出了贡献,该开发人员通过对参数优化[2]表示为基于环和公共密钥加密方法。在2003年,他们引入了NTRU标志[3],i。例如,NTRU的数字签名版本。同年,他们与另一个团队进行了演讲,分析了NTRU的解密错误[4]。J. H. Silverman在2003年在一个环中发表了一份有关可逆多项式的技术报告[5]。在2005年,J。H. Silverman Ve W. Whyte发表了一份技术报告,该报告分析了NTRU解密中的错误概率[6]。此外,发表了有关提高参数的安全级别的文章[7]的创始团队在网站www.ntru.com上发布了相关报告。ntru对基于量子计算机的攻击及其速度具有悄然抵抗。保护这种抗药性基础的基本原因是找到一个晶格向量,该晶格向量的长度最小,功能最小的问题是找到最接近私钥的晶格点进入高维晶格的问题[8]。与其他公共密钥密码系统不同,针对这些基于量子的攻击的NTRU密码系统的庇护结构使它更加有趣,并且每天都在发展。最初由Coppersmith等人制作了对NTRU密码系统的一些全尺度非破坏性攻击的一些例子。在1997年[9]。然后由Ho ff Stein等人提出了与此攻击的E ff ects一起消失的新参数。2003年[10]。作为攻击[11]的另一个例子,直到今天,它一直提高了更强大,当前和新的参数以及对NTRU密码系统的解决方案,从而组织了一项攻击,以分裂DI FF [12]。代表详细的读数,可以看出[13-15]对于不同类型的攻击类型,相反,对于提出的新参数和新系统,可以看到[16-18]。
不如LC-MS/MS敏感和特异性,尤其是在复杂且高度加工的矩阵(例如化妆品)中。DNA分离株和DNA降解的质量可能会影响测试结果PCR方法无法识别明胶样品中的污染程度,因为DNA检测与样品中存在的蛋白质或肽的量没有直接相关。
许多研究人员都研究了这些特殊矩阵,涉及递归序列,例如斐波那契,卢卡斯,佩尔,平衡数字等。在过去的几十年中,但研究人员仍然非常感兴趣。例如,Akbulak和Bozkurt [1]获得了Toeplitz矩阵的规范,并带有斐波那契和卢卡斯号的条目。然后S。Shen [19]和A.daäSdemir[6]分别将这项研究扩展到K-fibonacci和K-lucas数量,以及Pell和Pell-lucas数量。另外,Solak和Bahsi [20]获得了涉及斐波那契和卢卡斯数的汉克尔矩阵的光谱规范的规范和边界。这项研究已扩展到其他数字序列,可以看到[3,9,10,15,21,22,24]。这些类型的特殊矩阵在各个领域都有广泛的应用,例如图像处理,振动分析,加密等。[14,16,23]。
日出大学,拉贾斯坦邦阿尔瓦尔 摘要:矩阵是人工智能 (AI) 的基础,是各种应用程序中数据表示、操作和转换的关键工具。从机器学习算法到神经网络架构,矩阵理论支持基本计算过程,使 AI 系统能够管理海量数据集、检测复杂模式并执行复杂转换。本文探讨了矩阵在 AI 中不可或缺的作用,重点介绍了线性和逻辑回归中的基本矩阵运算,以及它们在卷积神经网络 (CNN) 和循环神经网络 (RNN) 等更高级模型中的应用。探讨了矩阵分解和特征值计算等关键数学运算在数据缩减和特征提取中的重要性,从而提高了计算机视觉、自然语言处理 (NLP) 和机器人等领域的计算效率。本文还解决了与大规模矩阵运算相关的计算挑战,例如高维数据处理、可扩展性和数值稳定性。为了克服这些限制,我们讨论了分布式矩阵计算框架、GPU 和 TPU 硬件加速以及稀疏矩阵技术的进步,展示了这些创新如何提高 AI 模型的效率和可扩展性。此外,量子计算和矩阵专用硬件解决方案的最新进展为未来的研究提供了有希望的方向,有可能通过实现矩阵计算的指数级加速来彻底改变 AI。总体而言,矩阵仍然是 AI 计算能力的核心,它提供了一个多功能且高效的框架,既支持当前的应用,也支持人工智能的新兴功能。关键词:矩阵理论、线性代数、机器学习、人工智能、奇异值分解 (SVD)。
摘要:编码的代数理论是现代代数应用领域之一。遗传矩阵和代数生物学是进一步理解遗传密码模式和规则的最新进展。遗传密码由DNA和RNA中的四种核苷酸(A、C、G、T)的组合编码而成。DNA决定了生物体的结构和功能,包含完整的遗传信息。DNA碱基对(A、C、G、T)构成双螺旋几何曲线,定义了64个标准遗传三联体,并进一步将64个遗传密码子退化为20种氨基酸。在三角学中,四个基本三角函数(sin x、tan x、cos x、cot x)为傅里叶分析对信号信息进行编码提供了基础。本文利用这4对三角函数基(sin x、tan x、cos x和cot x)生成了64个类似64个标准遗传密码的三角三元组,进一步研究了这64个三角函数,得到了20个类似20个氨基酸的三角三元组。这一相似性表明,通用遗传密码与三角函数的通用性之间存在相似性联系。这种联系可能为进一步揭示遗传密码的模式提供桥梁。这表明矩阵代数是生物信息学和代数生物学中一种有前途的工具和足够的语言。
“抽象空间” 2023。Chiara Passa 的 AR 和人工智能艺术作品。“抽象空间”通过整面墙的投影,将一个虚构的极简环境(我使用 Chat GPT API 创建)与真实空间重叠,而这个空间一旦被观众使用 AR-AI 应用程序修改,就会神秘、怪异或有时不完整地重新出现在我们周围。观众在这个新的不稳定空间中,通过观看由几何体积阴影构成的新 AI 空间,体验到一种缺失或空虚的感觉,这些阴影是根据缓冲过程沿光源方向挤压图元轮廓而创建的。还提供视频手册(屏幕 7')版本。视频预览:https://youtu.be/zzAaf7hxTYI Android 应用程序和相关矩阵可供下载。每个动画持续 6'.30''。 https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace2&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace3&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace4&hl=en
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年10月9日。 https://doi.org/10.1101/2024.02.01.578324 doi:biorxiv Preprint
1。人类细胞,组织以及细胞和组织碱基产物(HCT/PS)需要根据21 CFR第1271部分遵守供体资格要求,以及适用的指导文件,以防止HCT/P的引入,传播和传播传播疾病。2。确保在各个制造阶段(标题21 CFR 610.1,610.13,21 CFR 312.23(a)(a)(a)(7)(7)(i)(i)和(i)和(iv)和(iv)和(iv)和(iv)和(iv)。3。下一代测序(NGS)或高通量测序是一种能够大规模平行测序核酸序列的技术。因此,这种测序技术为生物制剂中的综合病毒检测提供了潜在的应用。4。从细胞和组织高通量测序中检测病毒检测的关键步骤是有效提取核酸从不定的剂和下一代测序文库制备中。检测不定代理的另一个关键步骤是使用生物信息学识别外科药物的读数。5。该项目旨在评估RNA提取方法和下一代测序库制备方法,以检测来自不同样本矩阵的不定剂RNA。此外,我们的目标是评估和开发生物信息学工作流程,以有效地检测这些药物。
(service side), route maps, BFD PMTU, CoS marking (802.1P), static and service side NAT, NAT pool support for DIA, NAT using loopback interface address, HQoS, per-tunnel QoS, Ethernet subinterface QoS, WAN loopback support, OMP redistribution, service VPN redistribution, mapping BGP communities to OMP tags, match and set communities during BGP to OMP redistribution (localized and centralized policy), secondary IP address support on SVI (interface VLAN), TLOC extension, DHCP options support, BFD for BGP/OSPF/EIGRP - CLI template, NTP server support, DIA Tracker: Interface tracker for DIA, ability to track static route on service VPN, per-class/DSCP BFD for AAR, ACL matching ICMP,增强策略路由(CLI模板),巨型帧(1GE接口),自定义应用程序支持(用于应用程序意识路由),SD-AVC,灵活的Netflow,EVPN,MacSec支持,自动化服务链条和插入。
建议引用推荐引用Anandhkumar,M。; A. Bobin; S. M. Chithra;和V. Kamalakannan。“广义的对称的Fermatean中性粒细胞模糊矩阵”。中性粒细胞和系统70,1(2024)。https://digitalrepository.unm.edu/nss_journal/vol70/iss1/7