方法:通过采用统一的GWA摘要数据,涵盖了GWAS目录中的731个免疫特征(从GCST0001391到GCST0002121的登录编号),我们的分析集中于淋巴细胞群的流动量仪,鉴定3,757 sardinians,以识别3,757 sardinians,以识别3,757 sardinians,以识别3,757 Sardinians,以识别3,757 Sardinians。此外,我们从精神病基因组学联盟中获得了总结GWAS统计数据,以评估ADHD的遗传预测。采用ADHD2019的研究(2019年GWAS ADHD数据集的20,183例病例和35,191例对照)和ADHD2022(38,691例病例和275,986例对照,来自2022 GWAS ADHD Dataset)。通过检查全基因组关联信号,我们使用全面的ADHD2022数据集中确定了循环免疫细胞和ADHD之间共享遗传方差。我们主要利用了孟德尔随机研究和敏感性评估中的反向差异加权(IVW)和加权中值方法来评估多样性和多效性。
摘要:本文讨论了一种针对脑肿瘤的医学图像分割改进模型,该模型是一种基于U-Net架构的深度学习算法。在传统U-Net基础上,引入GSConv模块和ECA注意力机制,提升模型在医学图像分割任务中的表现。通过这些改进,新的U-Net模型能够更高效地提取和利用多尺度特征,同时灵活地聚焦重要通道,从而显著提高分割效果。在实验过程中,对改进的U-Net模型进行了系统的训练和评估。通过观察训练集和测试集的loss曲线,我们发现两者的loss值在第8个epoch之后迅速下降到最低点,随后逐渐收敛并趋于稳定。这表明我们的模型具有良好的学习能力和泛化能力。此外,通过监测平均交集比(mIoU)的变化,我们可以看到在第35个epoch之后,mIoU逐渐趋近于0.8并且保持稳定,这进一步验证了模型的有效性。与传统U-Net相比,基于GSConv模块和ECA注意机制的改进版本在分割效果上表现出明显的优势,特别是在脑肿瘤图像边缘的处理上,改进模型能够提供更为准确的分割结果,这一成果不仅提高了医学图像分析的准确率,也为临床诊断提供了更可靠的技术支持。综上所述,本文提出的基于GSConv模块和ECA注意机制的改进U-Net模型为脑肿瘤医学图像分割提供了一种新的解决方案,其优越的性能有助于提高疾病的检测和治疗效果,在相关领域具有重要的意义。未来希望进一步挖掘该方法在其他类型医学图像处理中的应用潜力,推动医学影像事业的发展。
抽象注意力缺陷多动症(ADHD)是一种神经发育多基因疾病,影响了世界各地5%以上的儿童和青少年。遗传和环境因素在ADHD病因中起着重要作用,这导致了整个人群中广泛的临床结果和生物学表型。与同龄人的对照相比,患者通常发现了4年滞后的大脑成熟延迟。细胞生长率的可能差异可能反映了多动症患者的临床观察结果。但是,仍未阐明细胞机制。为了检验这一假设,我们分析了诱导多能干细胞(IPSC)和神经干细胞(NSC)的增殖,这些细胞(NSC)源自男性儿童和诊断为ADHD的男孩和青少年(使用多基因风险评分评估),以及其相应的对照组。在当前的试点研究中,值得注意的是,ADHD组的NSC繁殖小于对照,而在IPSC发育阶段没有发现差异。我们来自两种不同的增殖方法的结果表明,患者发现的功能和结构延迟可能与这些体外表型差异有关,但从明显的神经发育阶段开始。这些发现是多动症疾病建模领域的第一个发现,对于更好地了解该疾病的病理生理可能至关重要。
理论上,权力体验可以增加对奖励的关注,但事实真的如此吗?虽然这是一个普遍的假设,但没有一项研究直接调查权力对奖励关注的影响。此外,调查权力对与奖励相关的行为的影响的研究并没有将奖励与可能的替代目标分开。因此,本文直接研究了权力是否会在将奖励与可能的替代目标移除/分离的同时增加个人对奖励的关注。通过七项使用多种范式和方法(即自我报告、概念激活、鼠标跟踪和脑电图)的研究,我们的结果几乎没有支持心理权力增加对奖励关注的假设。我们的主要结果得到了贝叶斯分析和跨研究荟萃分析的补充。本文的研究结果与那些试图解释权力与不道德行为之间联系的人高度相关,其中对奖励的关注增加被认为发挥了作用。我们的结果表明,需要探索其他可能的机制来确定强者行为背后的驱动力。
许多自闭症谱系障碍(ASD)的儿童也患有注意力/多动症(ADHD)。ADHD与负面结果的风险增加有关,并且早期干预至关重要。当前的指南建议进行社会心理干预措施,例如行为训练,例如在管理或没有ASD的儿童中管理多动症症状的第一个治疗方法。如果症状对这些干预措施产生难治性,则建议使用刺激剂,2-肾上腺素能激动剂抑制剂,选择性去甲肾上腺素再摄取抑制剂和第二代抗精神病药。但是,这些药物治疗没有在学龄前儿童中使用的监管批准,并且证据证明了该人群的安全性和效率在历史上非常有限。自2020年发布当前指南以来,已经发表了一些新的随机对照试验和现实世界的研究,这些试验已经调查了这些药物在患有ADHD的学前班儿童中的效率和耐受性,有或没有合并症ASD。在这里,我们对这些研究的关键发现进行了综述,该研究表明,越来越多的证据支持在患有ASD合并症的学龄前儿童中使用药理学干预措施。
卡塔尔国埃米尔谢赫塔米姆·本·哈马德·阿勒萨尼殿下对姐妹国家土耳其共和国的访问引起了土耳其媒体的关注,土耳其媒体用大量篇幅报道了这次重要访问。访问期间,埃米尔殿下和他的兄弟、总统雷杰普·塔伊普·埃尔多安主持了卡塔尔-土耳其最高战略委员会第 8 次会议。土耳其报纸和电视台重点报道了埃米尔殿下和土耳其总统之间的双边会晤,会晤期间,双方回顾了两个兄弟国家发展战略关系的前景,并讨论了地区和世界共同关心的问题。他们还关注了埃米尔殿下和总统埃尔多安签署的协议和谅解备忘录
尖峰神经网络(SNNS)代表了向更有能力和生物学上合理的计算模型转变的范式的最前沿。作为第三代神经网络技术,通过模拟生物神经加工的事件驱动的特征,SNN是传统机器智能系统的有前途的替代方案(Maass,1997)。SNN的吸引力是多方面的,它们的能力不仅可以在较低的功耗下运行,还可以以紧密反映大脑时空动态的方式进行计算(Roy等,2019)。SNN的基于尖峰的通信协议特别适合稀疏和异步计算,使其非常适合在神经形态芯片上部署。这些芯片旨在模仿大脑的神经结构,利用SNN的固有稀疏激活模式实现了显着的能量效率改善(Li等,2024; Frenkel等,2023; Merolla et al。; Merolla et al。,2014; Davies et al。,2018; davies et al。,2018; pei; pei et al an al et al et al。
水下环境的复杂性以及水中的轻衰减和散射通常会导致水下图像中的质量降解,包括颜色失真和细节模糊。为了消除水下成像中的障碍,我们提出了一种基于级联注意网络MSCA-NET的水下图像增强方法。特别是该方法设计了一个注意引导的模块,该模块以串行和并行方式连接通道和像素的注意,以同时实现通道特征的重新填充和特征表示增强。之后,我们提出了一个多尺度特征集成模块,以捕获图像中不同尺度的信息和详细信息。同时,引入了残留连接,以通过从浅水功能中获取更详细的信息来帮助深度功能学习。我们在各种水下数据集上进行了广泛的实验,结果表明,与最新的水下图像增强方法相比,我们的方法仍然具有优势。
心血管疾病(CVD)仍然是全球超过1700万枚死亡的主要原因。以高精度对心力衰竭的早期检测对于临床试验和治疗至关重要。患者将根据血压,胆固醇水平,心率和其他特征等特征将患者分为各种类型的心脏病。使用自动系统,我们可以通过分析其特征来为那些容易发生心力衰竭的人提供早期诊断。在这项工作中,我们部署了一种新型的基于自我发挥的变压器模型,该模型结合了自我发项机制和变压器网络以预测CVD风险。自我发项层捕获上下文信息并生成有效建模数据中复杂模式的表示。自我注意力的机制通过给输入序列的每个组成部分来提供一定程度的注意力重量来提供可解释性。这包括调整输入和输出层,结合更多层,并修改注意力过程以收集相关信息。这也使医生可以理解数据的哪些功能有助于该模型的预测。提出的模型在Cleveland数据集上进行了测试,克利夫兰数据集是加利福尼亚大学尔湾分校(UCI)机器学习(ML)存储库的基准数据集。将提出的模型与几种基线方法进行比较,我们达到了96.51%的最高准确性。此外,我们的实验结果表明,我们的模型的预测率高于其他用于心脏病预测的尖端方法的预测率。
1个心理科学学院,澳大利亚墨尔本莫纳什大学医学院,护理与健康科学学院; 2英国牛津大学医学院实验心理学系; 3墨尔本墨尔本大学心理科学学院,澳大利亚墨尔本; 4澳大利亚堪培拉大学卫生学院心理学学科; 5特纳大脑与心理健康研究所,澳大利亚墨尔本莫纳什大学医学院,护理与健康科学学院; 6日本苏亚国家信息与通信技术学院(NICT)信息与神经网络中心(Cinet); 7高级电信研究计算神经科学实验室,2-2-2 Hikaridai,Seika-Cho,Soraku-Gun,京都,日本,日本