想象力,基于模型的推理和决策的神经基础对神经科学产生了很大的兴趣[5-7];在认知水平上,在动物和人类学习中已经假设并证明了模型学习和心理模拟[8-11]。其在基于人工模型的代理中的成功部署迄今已仅限于可用的确切过渡模型[12]或模型易于学习的域中的设置,例如符号环境或低维系统[13 - 16]。在代理无法使用模拟器的复杂域中,最近的成功由无模型方法主导[2,17]。在此类域中,采用标准计划方法的基于模型的代理的性能通常会遭受功能近似作用的模型错误[18,19]。这些错误在计划过程中复合了,导致过度优势和剂性能差。当前没有计划
人类是一种社会性物种,在以目标为导向的合作过程中会进行复杂的互动。1 社会认知是此类互动的基础,包括三个主要组成部分:模拟、共情和心理化。标准的模拟概念是指一种功能过程,在此过程中,观察者试图自发地(甚至借助想象力)重现另一个人的相同心理状态。2 首先,Gallese 3 将社会认知归因于一种能够立即理解的具身模拟,并且与镜像神经元系统相关,即在执行有意动作(如运动动作)和观察相同动作时激活的神经系统。研究表明,6 个月大儿童在观察动作时运动皮层会被激活。4、5 第二个组成部分是共情,即分享感受和情感的能力。6 它是自动的,每个人都不一样,并且根据观察者与被观察者的关系类型而有所不同。 7、8 第三,心理化是社会认知的重要组成部分,是解读他人心理状态(如欲望、信仰和意图)的能力。9-11
摘要。在这篇 Outlook 论文中,我们解释了为什么当通过使用系统生理增强功能性近红外光谱 (SPA-fNIRS) 同时测量系统生理活动(例如心肺和自主神经活动)时,可以促进对功能性近红外光谱 (fNIRS) 神经成像信号的准确生理解释。SPA-fNIRS 的基本原理有两个方面:(i) SPA-fNIRS 能够更完整地解释和理解在头部测量的 fNIRS 信号,因为它们包含源自神经血管耦合和系统生理源的成分。用 SPA-fNIRS 测量的全身生理信号可用于回归 fNIRS 信号中的生理混杂成分。因此可以最大限度地减少误解。(ii) SPA-fNIRS 能够通过将大脑与整个身体的生理状态联系起来来研究具身大脑,从而对它们复杂的相互作用产生新的见解。我们预计 SPA-fNIRS 方法在未来将变得越来越重要。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。全部或部分分发或复制本作品需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.030801]
摘要 目的:本文回顾了现有的定性研究文献,这些文献涉及人们使用辅助和替代沟通 (AAC) 进行交流的经验。进行这次回顾的目的是更多地了解人们使用 AAC 进行交流时所重视的价值观和结果。进行这次回顾是为了更深入地了解这些经验,为制定患者报告结果测量 (PROM) 提供参考。材料和方法:对现有的定性研究文献进行定性证据综合,以探索和评估有关使用 AAC 的人的经验的当前知识。结果:从 115 份定性研究报告中,确定了 19 篇论文直接回答了研究问题和回顾的目的。确定了可以在由价值观、结果和背景结构组成的先验框架内组织的数据。结论:这次回顾使人们对需要 AAC 的人的经历有了更深入的分析理解。结果表明,一组概念可用于指导 PROM 的开发。 PROM 可用于帮助临床医生和研究人员更好地了解需要 AAC 的人的观点并评估干预措施。结果还鼓励专业人员重新考虑与需要 AAC 的人一起工作时使用的术语和方法,并反思影响人们沟通体验的多维因素。
建议的工作流程 建议的工作流程是,该人应该在网站上申请证书,该网站将首先确定是否存在基准残疾。智能助手和视频分析将有助于做出这一决定。将设置一个网络摄像头,其中包含预先指定的问题和预先指定的带有说明的协议。提供用于评估残疾的视频指南和说明手册将有助于以足够的信心得出结论,即患者是否有基准残疾。上诉机构将处理任何上诉。如果它确实符合基准残疾的条件,AI 将填写 WHO 的 ICF 核心集以创建功能档案;使用远程医疗来衡量能力和绩效,这可能取决于环境和社会规范
摘要目的:这项研究的目的是探索和描述美国方法中肌萎缩性侧面硬化症(PALS)的人的增强和替代性交流(AAC)的使用和服务交付经验:横截面数据:通过2021年的匿名在线调查表从216个PAL中收集的横截面数据。结果:超过70%的参与者至少报告了一些可检测的语音扰动,并且在面对面互动期间大约一半使用了辅助通信。在严重语音障碍的受访者中,有超过90%的人使用语音生成设备报告,而刚刚报告了使用低技术AAC的一半。大多数参与者都会与SLP讨论语音和交流,但在初始干预的时间和持续干预频率的时机上都有不同。不到一半的人报告说,他们的家庭成员或其他重要人物接受了与朋友交流有关的教育或支持。参与者还分享了他们对电话和视频通话,访问方法,安装系统,单词预测和存储短语以及消息和语音银行的使用和经验。结论:结果强调了早期推荐对于AAC干预,正在进行的重新审查和治疗,沟通伙伴的参与以及对多模式沟通的支持以及适应不断变化的需求的重要性。
卵巢癌仍然是一种具有挑战性的疾病,治疗方法有限,预后不良。肿瘤微环境 (TME) 在肿瘤生长、进展和治疗反应中起着至关重要的作用。TME 的一个特征是异常的肿瘤血管,这与血液灌注不足、缺氧和免疫逃逸有关。血管正常化是一种旨在纠正异常肿瘤血管的治疗策略,它已成为重塑 TME、增强抗肿瘤免疫力和与卵巢癌免疫治疗协同作用的一种有前途的方法。这篇综述文章全面概述了血管正常化及其在卵巢癌中的潜在影响。在这篇综述中,我们总结了抗血管生成和免疫调节之间复杂的相互作用,以及 ICI 联合抗血管生成治疗在卵巢癌中的应用。本综述中讨论的令人信服的证据有助于不断增长的知识体系支持使用联合疗法作为卵巢癌有希望的治疗模式,为进一步的临床开发和优化这种治疗方法铺平了道路。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权所有,于2024年8月16日发布。 https://doi.org/10.1101/2024.08.15.608063 doi:biorxiv preprint
动机:由于高通量和昂贵的测序方法,转录组学数据变得越来越易于访问。但是,数据稀缺性阻止了利用深度学习模型对表型预测的完整预测能力。人工增强训练集,即数据增强,建议作为正规化策略。数据增强对应于训练集的标签不变转换(例如,在文本数据上进行图像和语法解析的几何变换)。不幸的是,这种转换在跨文字组范围内未知。因此,已经提出了深层生成模型,例如生成对抗网络(GAN)来生成其他样本。在本文中,我们分析了基于GAN的数据增强策略,就性能指标和CAR表型的分类分析。
TIPS-VF:具有序列,长度和位置意识的可变长度DNA片段的增强向量表示Marvin I.de los santos logia.co,马尼拉大都会,菲律宾Midelossantos1215@gmail.com摘要,在机器学习过程中准确编码和表示遗传序列的能力对于生物技术的进步至关重要,这对于生物技术的进步至关重要,特别是基因工程和合成生物学。传统的序列编码方法在处理序列变异性,保持阅读框架完整性并保留生物学相关的特征中面临着显着的限制。这项初步研究介绍了TIPS-VF(可变长度片段的翻译器互动预种植者),这是一个简单有效的编码框架,旨在解决代表机器学习遗传序列的一些关键挑战。结果表明,TIPS-VF启用了可变的长度序列表示,该表示可以保留生物学环境,同时确保编码与密码子边界的对齐,从而特别适合模块化遗传结构。TIPS-VF在截断和碎片分析,序列同源性检测,域评估和剪接连接识别方面表现出卓越的性能。与需要固定长度输入的常规方法不同,TIPS-VF动态适应序列长度变化,保留基本特征,例如域相似性和序列基序。此外,TIPS-VF通过将序列嵌入与三个可能的开放式阅读框架统一,改善了开放的阅读框架识别并增强了向量零件和质粒元素的识别。总的来说,TIPS-VF提供了一个强大的,生物学上有意义的编码框架,通过结合序列,长度和位置意识来克服传统序列表示的约束。TIPS-VF编码基础架构可在https://tips.logiacommunications.com上找到。利益冲突:作者宣布没有利益冲突资金资金信息:无