与所有其他系统不同,空间增强现实 (SAR) 系统包括直接投射在现实世界图像上的虚拟内容。SAR 系统通常本质上是静止的。任何物理表面(如墙壁、桌子、泡沫、木块,甚至人体)都可以变成交互式显示器。随着投影仪尺寸、成本和功耗的降低,以及 3D 投影的进步,出现了一系列全新的交互和显示可能性。SAR 系统的最大优势是它们可以更准确地反映现实,因为虚拟信息可以以实际比例和大小进行可视化。此外,内容可以向更多查看者显示,例如,这可以实现同时工作。
当今人工智能研究进入新纪元,人工智能技术和应用已渗透到人类生活的方方面面,如何规避人工智能技术局限性带来的风险成为重大挑战。人机增强智能(HAI)的主要思想是替代人类的角色或将类似人类的认知能力嵌入智能机器。人机增强智能理念正受到学术界、产业界和政府部门的广泛关注和推动,其影响深远。人机增强智能的两种基本模式包括人机协同(HITL-HAI)和基于认知计算的人机增强智能(CC-HAI),这两种模式已成为人工智能的热点和基础前沿,近年来涌现出越来越多的原创研究。当前关于人机协同、人脑接口、人机协调与合作以及人机协同的高级感知和智能环境等理论正在不断涌现。尤其是 HITL-HAI 已广泛应用于航空、驾驶和机器人领域的交互式仿真模型。在此类模拟中,人类扮演着重要的角色
增强现实是通过眼镜或显示器将数字信息投射到物理空间。应用包括导航、工业中的装配说明投影,以及建筑项目的可视化、营销中的教育和娱乐内容或产品。除了工业和护理领域的初步试点项目(例如,在护理期间可以通过眼镜获取患者记录的数据)外,当今的 AR 应用大多基于智能手机或平板电脑。这至少使在公共场所永久使用变得困难。对于世界上几乎任何地方,原则上都可以检索无数信息。新 AR 设备的接受度可能在很大程度上取决于它们的使用提供的实际附加值的程度。在不久的将来,突破性应用的开发是否会使 AR 成为关注的焦点尚不确定,也很难评估。因此,我们描述了 AR 在公共场所使用的可能场景,
增强现实 (AR) 是可用于提高 4.0 革命时代教育质量的交互式技术之一。本研究的目的是在动力传动课程中开发基于移动设备的交互式媒体增强现实 (ACRMobi)。此外,它还分析了讲师和学生对实施 ACRmobi 作为 21 世纪现代职业教育媒体的反应。4D 模型用作媒体产品开发模型,而使用的工具是对所开发媒体的验证和响应问卷。它使用描述性定性和定量分析技术通过查看结果标准来计算平均分数。以 ACRmobi 媒体形式获得的研究结果基于专家评估有效,并基于讲师的反应和学生的反应在其中一个职业教育机构实施后具有实用性。作为验证者的专家报告说,ACRMobi 是一种可以应用于职业教育的交互式媒体。ACRMobi 包含可以提高学生积极性的元素,因为它是基于技术的。综合学习ACRMobi更有激励性,应用也更灵活。
在他的1965年文章《终极展示》中,伊万·萨瑟兰(Ivan Sutherland)想象了未来的计算机界面,它模糊了数字世界和物理世界之间的分离(Sutherland,1965)。当时,他正在使这一愿景成为现实,创建了一个透明的头部安装显示(HMD),该显示器允许用户看到叠加在现实世界中的虚拟图像(Sutherland,1968)。跟踪了用户的头部位置,因此虚拟内容显示在空间中,并且可以使用手持棒来与它进行交互。尽管该术语直到几十年后才创造,但萨瑟兰的系统是第一个工作增强现实(AR)界面。AR是具有三个关键特征的技术(Azuma,1997); 1)它结合了真实图像和虚拟图像,2)实时交互,3)虚拟图像在三个维度上注册。Sutherland的作品具有这些特性,但是50年后,他对最终展示的愿景仍未实现,并且需要更多的研究。Azuma对AR的定义提供了有关创建AR体验所需的技术的指导。为了结合真实图像和虚拟图像,需要显示技术。需要在实时用户界面技术中进行交互。需要在三维跟踪技术中注册AR内容。一旦这些技术仅在研究实验室中可用,但是今天它们可以在人们手中使用。当前带有相机,GPS和惯性传感器,高分辨率屏幕,快速网络以及强大的CPU和图形处理器的手机是人们体验AR的最常见方式。与苹果的Arkit(Apple,2020)和Google的Arcore(Google,2020a)兼容,为手机提供了准确的AR跟踪。用户可以在他们的手机屏幕上查看相机视图,并在其现实世界中查看虚拟对象。移动AR应用程序(例如Pokemon GO)已在十亿次下载(Nintendosoup,2019年),显示了该技术的容易访问程度。但是,手机提供的用户体验与萨瑟兰(Sutherland)的免提互动,立体声图形和虚拟图像的愿景始终在一个人的视野中。Mobile AR提供了一个易于访问的入口点,但是AR的真正潜力是通过使用头部安装的显示器,更丰富的交互和更好的跟踪技术来实现的。在这些领域中的每个领域中都有重要的巨大挑战,需要研究,如下所述。
虚拟现实 (VR) 和增强现实 (AR) 应用可让用户沉浸在数字世界中或将数字对象的图像添加到个人对周围物理环境的感知中,从而增强娱乐、游戏、学习和其他体验。VR 最常使用依靠立体显示器、空间音频和运动跟踪传感器的耳机来模拟完全虚拟的环境。AR 将虚拟元素分层叠加到物理环境中,通常通过智能手机或安装在专用眼镜上的显示器实现。VR 和 AR 统称为“XR”。许多 XR 技术使用耳机,但其他技术则使用先进的硬件 - 从汽车挡风玻璃上的平视显示器 (HUD) 到具有触觉服装、人造风和数十个摄像头的全尺寸虚拟环境。几乎所有 XR 技术都依赖于有关用户、其周围环境以及有时附近的个人的详细信息。
摘要 生物保守派生物伦理学家(例如 Kass,2002,《人类尊严与生物伦理学》,297-331,2008;Sandel,2007;Fukuyama,2003)提出了各种反对认知增强的哲学论点,即使用药物和技术使我们自己“比健康更好”,而不是仅仅治疗病症。两个值得注意的生物保守派论点诉诸于关于 (1) 成就的价值和 (2) 真实性的理念。本文表明,即使这些来自成就和真实性的论点能够有力地反对特定药物驱动的认知增强,但它们并不能延伸到一种越来越可行的技术认知增强形式,即通过增强现实实现的认知增强。一个重要的结果是,旨在提高某些认知任务表现的 AR 驱动的认知增强可能为认知增强的支持者提供一种有趣的“最佳点”,使我们能够追求增强倡导者的许多目标,而不会遭遇生物保守主义哲学家的一些最突出的反对。
在043 A高维空间中启用其语义相似性。044但是,此相似性计算过程045面临几个挑战。首先,查询与文档047之间的复杂SE-046摩西关系映射到标量相似性,该标量相似性无法重新触及足够的信息,并且很难在049架上持平(Brito and Iser,2023)。第二,当与长期文档进行交易时,例如具有256、051 512或更多令牌的文件,确定了与查询最相关的第052节,并且对相似性最大的053贡献最高的053是非常可取的,但挑战是挑战 - 054(Luo等人),2024; Günther等。,055 2024)。此外,许多NLP任务,例如SEN- 056 TENCE选择,搜索结果突出显示,针头057在干草堆中(Liu等人。,2024b; An等。,2024; 058 Wang等。,2024)和细粒度引用(Gao 059等人,2023;张等。,2024),需要对文本的深度和060细粒度的理解。061鉴于需要对细粒度的理解的需求,062只是将整个文档与查询保持一致的双重编码器似乎不足,因为它的召开对比损失主要强调全局065语义(Khattab和Zaharia,2020年)。com-066 pllement re-067 Triever的核心定位能力,我们提出了一个新颖而充满挑战的乐趣 - 068 damental问题:我们可以增强和整合069现有070检索器的信息本地化能力而无需牺牲其固有检索能力吗?首先,083072为了应对这些挑战,我们提出了一个073新颖的方法齿轮(ge neration-a u摘要074 r etrieval)。具体来说,我们将数据构建为075(查询文档信息)的三元组,但仍使用076对比度学习来优化相似度为-077 deween the查询和文档。在相同的078时间,我们设计了一个文本解码器,以在文档080中生成Rel-079 Evant Evant Evant-evant Ever-Graining信息,以增强RE-081 recy-081 threval和本地化功能。尽管082概念很简单,但仍有许多挑战。
这项研究旨在证明使用增强现实(AR)作为一种媒介,以通过将塑料废物转换为艺术产品来刺激零废物生活方式的创造力。简而言之,AR协助学生创建塑料废料的拼贴艺术,同时解释废物最小化。使用的方法是一种基于艺术的研究方法,可以发展创造艺术和绘画的能力。结果表明,学生对AR应用的使用有效地理解了,因为AR可以通过可视化幻灯片表演和短片的艺术品来刺激创造力,简单信息和现实主义。结果还显示,技术质量,工作美学以及对“塑料废物紧急”环境污染的关注价值显着提高。关于学习中AR零浪费的生活方式的媒体专家验证的结果表明,AR是良好而有趣的,使学生更容易理解目标在绘画中实现技术和审美质量方面的目标。本研究还支持可持续发展目标(SDG)中的当前问题。