2025 年 2 月 10 日通过 Regulations.gov 以电子方式提交 Paul L. Reed 卫生部副助理部长 疾病预防和健康促进办公室 1101 Wootton Parkway, Suite 420 Rockville, MD 20852 回复:案卷号 HHS-OASH-2024-0017:2025 年膳食指南咨询委员会科学报告 亲爱的里德先生: 美国全国鸡肉委员会 (NCC) 很高兴有机会对 2025 年膳食指南咨询委员会 (DGAC) 的科学报告发表评论。NCC 是一家全国性的非营利性贸易协会,代表生产和加工美国 95% 以上鸡肉的公司。如果委员会提出的一些建议按提议采纳,我们的会员、许多美国人的健康以及世界各地的鸡肉消费者将受到负面影响。美国鸡肉生产商和许多营养和健康界人士特别关注的是报告中以下三项委员会具体建议,包括:
Craig 被 Chambers & Partners 和 Legal 500 评为劳动法领域的领先律师,并连续多年被评为第一等级的领先初级律师。这些名录最近对他的描述如下:(i)“他是最好的律师。他非常聪明,能够迅速解决复杂问题,随时准备讨论他的建议并接受质疑,合作性强,深受客户喜爱。他是一位令人敬畏的辩护律师,行动力惊人”(C&P 2024);(ii)“他真的是全能型律师,集敏锐的才智、非常亲切的举止和勤奋的天性于一身。他的辩护能力非常出色”(L500 2024);(iii)“一位令人难以置信且非常有策略性的交叉询问者”(C&P 2023);以及(iv)“他的辩护能力、才智、策略和商业性相结合,为客户提供了他们对大律师的所有期望。他非常容易合作,对客户很友好,客户总是希望他能加入团队处理最棘手的案件”(L500 2023)。他入围了 2023 年 Legal 500 年度最佳就业青年。
1 73000010330000307 Jayadeva Match Inds。,2 73000019550000009精英产品Mysore。3 73000029910000304南印度匹配项,4 73000038570001101酒店Dasaprakash Paradise 5 73000053040001101 Southern Star 6 7300005409000000506预先组件和工具(P) 73000054680000607 SAN ENGINEERING&LOCOMOTIVE CO.LTD。,9 73000054700000605 BEML LTD.,10 73000054760000404 WIPRO ENTERPRISE PRIVATE PRIVATE LIMITEC Works, 13 73000058370001202 Shantala Theatre, 14 73000059270000607 Universal Automobile & Dairy Products, 15 73000059330001202 STERLING & SKYLINE THEATRE 16 73000059600000506 VR & Brothers, 17 73000063820000910 Larsen & Toubro Limited 18 73000065590000902 Ply Mold 19 73000065620000607 Indavara Engineering Company Private Limited 20 730000691900900910 Murhopye Scientific Company 21 730000705900001011 Meenakshi Sundaram Textiles Ltd. 73000074890001018 RAVI安全局,25 73000082560000606 Super Home Elctronics Ltd.,26 73000083670000204 Veekeyar Rubber Mfrs.pvt.ltd。ltd. 53 73000106090001018有效的安全与侦探局,54 7300010804000000009 SREEDEVI餐厅,55 73000112570000004 Gangothri roller Fron Mills Pvt.ltd。Ltd. 57 73000115460001018 Bharath Security Bureau 58 73000121460000404 LITETRONICS VIJAY(印度)Pvt.ltd。,59 73000122110000009928 73000087510000605 SIDVIN MACERINERIS PVT.LTD。 73000094590001101新的Iyengar Tiffin&Meal Center,33 73000095090001101 NALPAK餐厅34 73000095120000910 Canara包装工业,35 7300000000000000000000204 CHAMUNDI PORYMERS(P)SUERING PORYMER(P)36 7373735195000000000505050505050505050505050505050505000000000000000000000000000000来730000952220000607精密齿轮和整理器,38 73000095230000607 Sujaya Industries,39 7300000095260000607 Aditya Industries,40 730000000000000000000000002002新的Vijayalakshmi锯磨,43 73000097760001008动态安全服务,44 73000000999330001018狮子安全局45 73000000000000604 Neulite产品Pharmaceuticals(P)Ltd。,48 73000101540000204 Vishwas橡胶(P)Ltd。 7300010508000000007 Prasadhini Enterprises Pvt。
最近提出了一种容错方法来准备 Q 1 码的逻辑码态,即编码一个量子比特的量子极性码。其中的容错性由错误检测装置保证,如果在准备过程中检测到错误,则完全丢弃准备。由于错误检测,准备是概率性的,其成功率(称为准备率)随代码长度的增加而迅速下降,从而阻止了大代码长度的代码状态的准备。在本文中,为了提高准备率,我们考虑工厂准备 Q 1 码态,其中尝试并行准备多个 Q 1 码态副本。使用额外的调度步骤,我们可以避免每次检测到错误时完全丢弃准备,从而反过来提高准备率。我们进一步提供了一种理论方法来估计使用工厂准备准备的 Q 1 码的准备和逻辑错误率,该方法被证明与基于蒙特卡洛模拟的数值结果紧密相关。因此,我们的理论方法可用于为大代码长度提供估计,而蒙特卡罗模拟实际上并不可行。对于电路级去极化噪声模型,我们的数值结果表明准备率显著增加,特别是对于较大的代码长度 N 。例如,对于 N = 256 ,对于实际有趣的物理错误率 p = 10 − 3 ,它从 0.02% 增加到 27%。值得注意的是,N = 256 的 Q 1 码在 p = 10 − 3 和 p = 3 × 10 − 4 时分别实现了大约 10 − 11 和 10 − 15 的逻辑错误率。与具有相似代码长度和最小距离的表面码相比,这相当于提高了大约三个数量级,从而表明所提出的方案用于大规模容错量子计算的前景。
摘要 - 在图形处理单元(GPU)上执行的深神经网络(DNN)的可靠性评估是一个具有挑战性的问题,因为硬件体系结构非常复杂,软件框架由许多抽象层组成。虽然软件级故障注入是评估复杂应用程序可靠性的一种常见且快速的方法,但它可能会产生不切实际的结果,因为它对硬件资源的访问有限,并且采用的故障模型可能太幼稚(即单位和双位翻转)。相反,用中子光束注射物理断层提供了现实的错误率,但缺乏故障传播可见性。本文提出了DNN故障模型的表征,该模型在软件级别结合了中子束实验和故障注入。我们将运行一般矩阵乘法(GEMM)和DNN的GPU暴露于梁中子,以测量其错误率。在DNNS上,我们观察到关键错误的百分比可能高达61%,并表明ECC在减少关键错误方面无效。然后,我们使用RTL模拟得出的故障模型进行了互补的软件级故障注入。我们的结果表明,通过注射复杂的断层模型,Yolov3的误导率被验证为非常接近通过光束实验测得的速率,该速率比仅使用单位倒换的断层注射测量的频率高8.66倍。
目标:非综合性口面裂(OFCS)病因涉及多个遗传和环境因素,具有超过60个识别的风险基因座;但是,他们仅占估计风险的少数。表观遗传因子(例如差异DNA甲基化(DNAM))也与OFCS风险有关,并且可以改变不同裂缝类型的风险并改变OFCS渗透率。dnam是将甲基(CH3)组的共价添加到核苷酸胞嘧啶中,可能导致靶基因表达变化。DNAM可能会受到环境影响和通过甲基化定量基因座(MEQTL)的影响。我们假设异常DNAN和基因表达的改变在OFC的病因中起着关键作用,并且某些影响OFCS风险的常见遗传变异是通过影响DNAM的。方法:我们使用了来自10个裂口相关的SNP和全基因组DNA甲基化数据(Illumina 450K阵列)的基因型,用于409例OFC和456个对照,并鉴定出23个与裂口相关的MEQTL。然后,我们使用362 cleft-不一致的SIB对的独立队列进行复制。我们使用甲基化特异性QPCR来测量每个CpG位点的甲基化水平,并结合基因型和甲基化数据,用于使用线性模型中的R package Matrixeqtl进行每个SNP-CPG对的相互作用分析。我们还进行了一个配对的t检验,以分析兄弟姐妹对的每个成员之间的DNA甲基化差异。配对t检验显示CG06873343(TTYH3)(p = 0.04)的显着差异; CG17103269(LPIN3)(P = 0.002)和CG19191560(LGR4)(p = 0.05)。结果:我们复制了9个MEQTL,显示了RS13041247(MAFB)-CG18347630(PLCG1)(P = 0.04)之间的相互作用; RS227731(NOG)-CG08592707(PPM1E)(p = 0.01); RS227731(NOG)-CG10303698(CUEDC1)(p = 0.001); RS3758249(FOXE1)-CG20308679(FRZB)(p = 0.04); RS8001641(SPRY2)-CG19191560(LGR4)(p = 0.04); RS987525(8Q24)-CG16561172(MYC)(P = 0.00000963); RS7590268(THADA)-CG06873343(TTYH3)(p = 0.04); RS7078160(VAX1)-CG09487139(p = 0.05); RS560426(ABCA4/ARHGAP29)-CG25196715(ABCA4/ARHGAP29)(p = 0,03)。结论:我们的结果证实了以前的证据,即通过GWAS研究检测到的某些常见的非编码变体可以通过表观遗传机制(例如DNAM)影响OFC的风险,例如DNAM最终会影响和调节基因表达。鉴于在大多数OFC基因组广泛的关联研究中,非编码SNP的流行率很高,我们的发现可能会解决主要的知识差距,例如缺少遗传力,降低的渗透率和与OFCS表型相关的可变表达性。
美国的个人资料保罗·乌尔里希(Paul Ullrich)博士是劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)气候韧性的负责人,也是加州大学戴维斯分校的区域和全球气候建模教授。他是美国能源部气候模型诊断与比对对比的主要研究人员(PCMDI)。他的工作着重于区域气候信息的开发,分析和评估。在这个角色中,他与美国各地的从业人员团体紧密合作,以了解其气候数据的需求,并了解气候变化的地区气候和极端天气事件如何影响。
•对温室气体排放的贡献以及对土地利用变化的气候变化的影响(即,荒野生态系统破坏释放出来的排放)和该地区的车辆排放量增加。•由于拟议的北停车场位于平原和混凝土中所提议的北停车场的潜在贡献,而混凝土的北部停车场则不会以与本地土壤和植被相同的速度吸收水。(即,用混凝土代替本地植被可能会导致在流动事件中更快地移动水的侵蚀)。•与拟议的多模式运输相关的风险。ARP的目的是开发多模式运输,并明确包括提及客车。但海的范围不包括对大众客运轨道的引用。这意味着该地区增加火车活动(以及相关干扰)的潜在影响可能被排除在环境评估之外。