1960 年代,耐甲氧西林金黄色葡萄球菌(MRSA)开始出现,并有报道呈波浪式出现(Strausbaugh et al ., 1996)。国家医院感染监测系统的数据报告,重症监护病房中耐甲氧西林金黄色葡萄球菌菌株数量急剧增加,达到 59.5%-64.4%(Klevens et al., 2006)。目前已知的葡萄球菌的药物靶点包括肽聚糖生物合成途径的青霉素结合蛋白。以前,β-内酰胺类抗生素对葡萄球菌非常有效。此外,由于改良型青霉素结合蛋白的生物合成和β-内酰胺酶的生物合成,这些药物现在不再有效 (Kong et al .,2010)。全世界都在关注研究一种以前未曾研究过的抗生素的可能性。
细菌为治疗人类疾病提供了一种很有前途的递送系统。在这里,我们设计了基因组减少的人类肺部病原体肺炎支原体作为活生物治疗剂来治疗生物膜相关细菌感染。该菌株具有独特的遗传密码,这会阻碍基因转移到大多数其他细菌属,并且它缺乏细胞壁,这使得它能够表达针对致病菌肽聚糖的蛋白质。我们首先确定去除致病因素可在体内完全减弱底盘菌株。然后,我们设计了合成启动子并确定了内源肽信号序列,当该序列与异源蛋白质融合时,可促进有效分泌。基于此,我们为底盘菌株配备了一个旨在分泌抗生物膜和杀菌酶的遗传平台,从而产生一种能够在体外、离体和体内溶解导管上预先形成的金黄色葡萄球菌生物膜的菌株。据我们所知,这是第一个可以对抗临床相关的生物膜相关细菌感染的工程基因组减少细菌。
抗生素耐药性是公共卫生面临的一大挑战,过去的一年里这一问题愈演愈烈 [1, 2]。对于由细菌病原体金黄色葡萄球菌引起的感染尤其如此,这种感染是导致死亡的主要原因,通常与社区获得性耐药菌株 (MRSA) 有关 [3]。这就迫切需要找到新的解决方案,以便有效地诊断和治疗,克服耐药性,避免抗生素库的耗尽。需要金黄色葡萄球菌内的新蛋白质靶点来开发有效的诊断探针,既可用于成像应用,也可用于治疗策略,以阻断细菌的生产性感染,而不会迫使生物体选择耐药突变体。基于氟膦酸酯的活性探针在促进生物膜生长的条件下,鉴定出金黄色葡萄球菌中十种以前未鉴定的活性丝氨酸水解酶,这可以满足这一需求。这些酶被命名为氟膦酸酯结合水解酶 (Fphs),每个酶的字母顺序取决于其预测大小 (52 kD FphA – 22 kD FphJ) [4]。它们都是 α/β 水解酶超家族的成员,其特点是核心由八个 β 链组成,这些 β 链由几个 α 螺旋连接,活性位点为丝氨酸-组氨酸-天冬氨酸或谷氨酸三联体。亲核丝氨酸用于水解底物,小分子可以轻松且特异性地靶向 [5, 6]。一般来说,这些蛋白质在代谢物、肽和脂质的加工中起着重要作用,是控制细胞信号传导和代谢的一种手段;然而,到目前为止,所有 Fphs 的生物学功能仍然未知,只有 FphF 的结构被确定 [6, 7]。它们在生物膜形成条件下的活性状态使它们易于通过化学抑制剂进行修饰,从而开发成探针和药物。这种新化合物
细菌持久细胞是高度耐受性抗生素的休眠表型变体的亚群,对感染控制提出了重大挑战。研究抗生素持久性的机制对于制定有效的治疗策略至关重要。在这里,我们发现了耐受性频率与先前感染的牛乳腺炎之间的显着关联。上一个。金黄色葡萄球菌感染导致s。金黄色葡萄球菌耐受性在随后在体内和体外感染中被利福平杀死。实际上,受过训练的免疫的激活导致s的利福平持久性。金黄色葡萄球菌在继发性感染中,降低了抗生素治疗的有效性和疾病严重程度的增加。机械,我们发现S。金黄色的持久性是由受过训练的免疫力引起的富马酸盐的积累来介导的。与二甲双胍和利福平的组合疗法促进了消灭持久性的疗法,并提高了经常性s的严重程度。金黄色葡萄球菌感染。这些发现提供了对训练的免疫与S之间关系的机械洞察力。金黄色的持久性,同时提供概念证明,表明训练的免疫是涉及持续病原体的复发细菌感染中的治疗靶标。
1 弗朗斯维尔跨学科医学研究中心 (CIRMF),弗朗斯维尔 BP 769,加蓬 2 法国国家科学研究院,生物统计和进化生物学实验室 UMR5558,里昂第一大学,69622 维勒班,法国 3 LabEx ECOFECT,传染病生态进化动力学,里昂第一大学,69622 维勒班,法国 4 MIVEGEC 实验室,UMR-CNRS 5290-IRD 224,IRD 蒙彼利埃,34394 蒙彼利埃,法国 5 国家葡萄球菌参考中心,传染病研究所,Croix Rousse 医院,里昂民事临终关怀院,69004 里昂,法国 6 细菌学实验室,罗纳-阿尔卑斯分枝杆菌观测站,传染性病原体,临终关怀院,69004 里昂,法国 7 国际传染病学研究中心,INSERM U1111,CNRS UMR5308,里昂第一大学,里昂高等院校,里昂临终关怀院,69004 里昂,法国 * 通讯地址:genistha@hotmail.com (BN); dominique.pontier@univ-lyon1.fr (DP) † 这些作者对这项工作做出了同等贡献。
本研究旨在探索纯水蛭唾液及其与优色林的组合对感染金黄色葡萄球菌的伤口的影响。实验包括在动物胸部背部区域诱导伤口。为了感染伤口,将 100 µl 密度为 0.5 McFarland 的金黄色葡萄球菌细菌引入伤口部位。使用 75 只雄性 Wistar 大鼠,分成 5 组,每组 15 只,每组进一步细分为 3 个亚组:用呋喃西林(阳性对照)、水蛭唾液、水蛭唾液软膏、优色林软膏和阴性对照(未治疗)治疗。随后,在第 7、14 和 21 天从伤口部位采集样本,以量化细菌存在并评估伤口组织恢复情况。宏观观察显示,在 14 天内,水蛭唾液软膏和纯水蛭唾液均具有良好的伤口愈合能力。微生物分析证实了水蛭唾液及其软膏配方的抗菌功效。根据研究结果,可以合理地推断,水蛭唾液软膏和纯水蛭唾液在促进伤口愈合和促进皮肤上皮组织再生方面均表现出令人称赞的功效。
。CC-BY 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2020 年 6 月 26 日发布。;https://doi.org/10.1101/2020.06.26.173138 doi:bioRxiv 预印本
该项目将研究纤维蛋白支架的存在如何改变金黄色葡萄球菌生物膜的性质。它将集中于生物膜形状,强度,精确组成,甚至是生物膜抵抗人类细胞攻击或与血小板相互作用的能力(另一种参与血液凝结的细胞)的能力,这都是由生物膜内的纤维蛋白引起的。为此,该项目将研究在存在人血浆和/或纤维蛋白的情况下在实验室生长的生物膜,无论是否添加人类细胞,它将依靠三维显微镜,不同生物膜成分的特异性免疫学染色,以及生物生物物质分析的生物生物物质粘弹性特性。将对从体内金黄色葡萄球菌感染收集的实际生物膜进行类似的分析 - 例如,来自与生物膜相关感染的人类以及体内模型的样本。
摘要:抗生素在感染部位的生物利用度低是治疗失败和细菌耐药性增加的主要原因之一。因此,开发新的、非传统的抗生素输送策略来应对细菌病原体至关重要。在这里,我们研究了两种氟喹诺酮类药物环丙沙星和左氧氟沙星封装到聚合物基纳米载体(纳米抗生素)中,目的是提高它们在细菌感染部位的局部生物利用度。优化配方以实现最大药物负载。纳米抗生素的表面用抗葡萄球菌抗体作为配体分子进行修饰,以靶向金黄色葡萄球菌病原体。通过荧光共聚焦显微镜研究了纳米抗生素与细菌细胞的相互作用。常规测试(MIC 和 MBC)用于检查纳米抗生素制剂的抗菌性能。同时,还采用了生物发光分析模型,揭示了对胶体系统抗菌效力的快速有效评估。与游离型抗生素相比,靶向纳米抗生素对金黄色葡萄球菌的浮游生物和生物膜形式均表现出增强的抗菌活性。此外,我们的数据表明,靶向纳米抗生素治疗的疗效可能受其抗生素释放曲线的影响。
本文的目的是开发一个专家系统,帮助医生有效地诊断和治疗人类的金黄色葡萄球菌感染疾病。研究的目标包括开发一个专家系统,用于快速诊断和检测人体皮肤上的金黄色葡萄球菌,帮助医生准确治疗葡萄球菌感染性疾病,帮助医院快速决策,提高药物处方的准确性,以及实现计算机化存储过程的系统,并启发知识工作者如何实施基于计算机的决策支持系统及其在医疗保健中的重要性。这项研究的动机是由于金黄色葡萄球菌的诊断和鉴定延迟以及传染病传播的速度快,这些细菌的治疗延迟,医务人员的猜测工作增加导致决策延迟以及医院缺乏电子存储设施。本研究的系统设计采用自上而下的方法,采用专家系统作为方法论,使用的编程语言是 Java,数据库设计是 MySQL。设计后的结果是一个计算机化的独立应用程序,可帮助健康从业者(医生)快速识别、诊断、开处方和治疗人体皮肤上的金黄色葡萄球菌。专家系统将有助于临床快速做出决策。关键词