大约六年前,在此问题的最初上诉中,People v Adamowicz,2017年6月22日发表的上诉法院的未发表意见(案卷号330612),我们拒绝了被告的论点,即在Miller诉阿拉巴马州,567 US 460,477-478的统治下,他对一级谋杀的强制性无期徒刑是违宪的; 132 S CT 2455; 183 L Ed 2d 407(2012),因为他犯了谋杀案时21岁。 最高法院拒绝就该论点上诉,但部分撤消了该意见,并以被告对律师和检察官错误论点的无效协助而退还。 People V Adamowicz,503 Mich 880(2018)。 返回初审法院后,我们再次拒绝了被告的无效援助和检察官错误论点,最高法院也是如此。 参见2020年9月3日发布的上诉法院意见,未发表的人v Adamowicz(Docket No. ) 330612),LV Den,但以其他理由返回__ Mich __; 982 NW2d 176(2022)。330612),我们拒绝了被告的论点,即在Miller诉阿拉巴马州,567 US 460,477-478的统治下,他对一级谋杀的强制性无期徒刑是违宪的; 132 S CT 2455; 183 L Ed 2d 407(2012),因为他犯了谋杀案时21岁。最高法院拒绝就该论点上诉,但部分撤消了该意见,并以被告对律师和检察官错误论点的无效协助而退还。People V Adamowicz,503 Mich 880(2018)。返回初审法院后,我们再次拒绝了被告的无效援助和检察官错误论点,最高法院也是如此。参见2020年9月3日发布的上诉法院意见,未发表的人v Adamowicz(Docket No.330612),LV Den,但以其他理由返回__ Mich __; 982 NW2d 176(2022)。330612),LV Den,但以其他理由返回__ Mich __; 982 NW2d 176(2022)。
注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE-AC0500OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的结果。
注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE- AC0500OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 ( http://energy.gov/downloads/doe-public-access-plan ) 向公众提供这些联邦资助研究的结果。
注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE- AC0500OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的结果。
开发用于储能和转换的下一代材料对于实现全球脱碳目标至关重要,而要加速这一发展,则需要深入了解这些材料在广泛长度尺度上的结构、化学和电子特性。扫描电子显微镜 (SEM) 和(扫描)透射电子显微镜 ((S)TEM) 等电子显微镜技术能够测量从埃到毫米长度尺度上的这些特性 [1]。此外,当与聚焦离子束 (FIB) 铣削相结合时,这些技术可以提取材料表面以下或设备内部区域的信息 [1]。由于这种独特的功能组合,电子显微镜已被证明是一种强大而多功能的材料样品表征工具。尽管具有这些优势,但传统电子显微镜通常仅限于在真空中稳定且在高能电子束下不易降解的固体材料。然而,许多用于下一代能源转换和存储设备的材料都是对光束敏感的、具有反应性的(例如与空气反应)或在低压下易挥发,因此需要进一步的技术进步才能通过电子显微镜进行表征。
虽然人们已经充分了解了 Al-Cu 合金在拉伸状态下的沉淀物-位错相互作用,但对蠕变行为的研究却少得多。新型热稳定 Al-Cu 合金具有 θ′ (Al 2 Cu) 作为强化沉淀物,在高达 300°C(约 60% 的熔化温度)及更高的温度下仍保持稳定,此时蠕变对机械行为至关重要。本研究使用原位中子衍射和扫描透射电子显微镜确定了此类 Al-Cu 合金中的沉淀物-位错相互作用。发生了向 θ′ 沉淀物的显著负载转移,这可归因于 θ′ 和 Al 基体界面上的位错环。因此,Orowan 环被确定为沉淀物-位错相互作用的主要活动。由于 Orowan 环和负载转移与显著的应变硬化有关,这些结果解释了这种合金中表现出的出色抗蠕变性,并为设计具有卓越蠕变性能的沉淀强化合金提供了见解。
蒂娜·雷尼格、格洛丽亚·格罗弗、玛丽·梅、劳尔·维拉斯科、理查德·沃尔夫、罗纳德·基普米勒、马克·利克泰格、谢恩·尼克森、特里·维斯纳、卡里·丁曼、约瑟夫·克鲁格、克莱奥丽娅·弗伦奇、劳伦斯·杜雷克、贾里德·布鲁纳、洛里·费诺尔、马奎塔·麦克斯韦尔、蒂尔·塞勒、乔迪·罗杰斯·罗德里格斯、泰拉·德希尔兹、詹姆斯·斯马赞卡、韦德·怀特、托马斯·谢泼德、梅丽莎·温切尔、朱迪·科普林格、乔丹·爱德华兹、杰瑞·维斯普里尼、辛迪·朗、蒂莫西·阿普尔、史蒂夫·怀特、林恩·纳普、威廉瓦西克、迈克尔·兰登、琳达·查特兰德、梅尔勒·勒梅尔、玛丽·韦兰德、劳伦斯·朱洛斯基、约翰·门罗、詹姆斯·普拉特科、詹姆斯·布拉瑟、丹·阿贝、丹泽尔·马丁、盖尔·哈克、凯文·斯托克斯、詹姆斯·麦金尼斯、拉塞尔·克莱因汉斯、詹妮弗·霍特里德斯、杰弗里·埃斯基尔森、亚瑟·基克兰、威尔逊·古姆、戴安娜·威尔逊、露丝·富兰克林、蒂莫西·贝尔、艾琳·麦考伊、巴拉蒂·夏尔马、比尔·德哈恩、罗伯特·奥里斯、霍华德·洛格斯登、贾罗德·沙尔克、李·谢尔顿、埃尔默·拉佩尔、威廉·普雷切夫斯基、伦纳德·威利斯、蒂姆·黑克斯、凯西·帕伦特、约瑟夫·科兹洛夫斯基、芭芭拉·麦克莱恩、道恩·格莱斯纳、凯文·格林、菲利普·麦克斯韦、海伦·约翰逊、简·达比、丽塔·克拉维克、特里·汤普森、西格尼·凯斯、大卫·伯克哈特、保罗·伊兹科夫斯基、朱迪思·马什、巴特·琼斯、苏根德里尼·庞南帕拉姆、安·拉扎罗、道格拉斯·阿诺德、威廉·杜兰德、迪诺·维斯普里尼、兰斯·库克、凯尔西·芬尼、杰弗里·格林、特雷西
该报告在重要的时候出现。锂离子电池存储的成本正在急剧下降,而需求正在增长,从2009年到2018年,安装储能容量的98%是基于锂离子的系统。北卡罗来纳州良好的位置可以利用该行业的增长,但该州目前落后于同行,在安装的公用事业规模的电池存储中落在前十名之外。北卡罗来纳州在电池存储中的滞后滞后是值得注意的,因为该州在太阳能生产和一般友好的可再生政策方面拥有良好的领导才能。引用该报告的话:“北卡罗来纳州有机会以更好地反映其在可再生能源生产中的主要地位,以及该州电池存储市场中的制造业和服务公司的基础。”
注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE-AC0500OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付清、不可撤销的全球许可,可出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的结果。
现在存在几种方案来获得对原子结构的控制;但是,许多人不考虑原子的坐标。在使用电子束控制的最初实现中,例如,在石墨烯中的掺杂运动运动时,人类操作员将手动将光束放置在附近的掺杂剂,以使其与邻居碳交换位置。在这些情况下,考虑原子位置,但这完全是手动程序。要将其扩展并推广到其他系统,需要相对于特定原子组的光束定位自动化。换句话说,必须在尽可能接近实时的接近时,然后进行特定的光束定位。最近,结果表明,集成神经网络可以处理STEM图像的实时原子分割[4,5]。也许更关键的是,这种原子分类方案必须是稳健的,因为它是在实验过程中积极执行的,这意味着模型超参数无法不断更改以提供合理的坐标提取。无论如何,合奏网络既可以实时为原子分割提供快速和强大的解决方案。提供了原子坐标和类,必须选择光束位置。对于某些材料,可以显然应放置梁以引起所需的响应,即形成预期的缺陷结构。在其他材料中,它可能更为复杂,例如,大量的国家行动对集合,其中梁位于分布中相对于原子类中的分布,并成像所得的结构;理论计算可以替代地进行