肾脏病,透析和肾脏移植部;法国淀粉样蛋白病的参考中心和其他单克隆IG沉积物,大学医院,POITIERS,法国单克隆肾上腺病具有肾脏意义(MGRS)是指由分泌的Monoclonal Ig(Migig(Migig)引起的肾脏疾病的小型B-cell Clone的关联,肾脏不适的肾脏疾病与肾脏差异有关。肿瘤负担的肾脏病变受肿瘤负担的独立,受MIG的物理化学特征的约束,涉及直接(MIG沉积或沉淀)或间接(自身抗体活性,补体活化激活)机制。与MGRS相关的肾脏疾病的频谱广泛,涵盖了拟南芥疾病(Fanconi综合征,晶体储存组织细胞增多症)和肾小球疾病。后者根据肾小球沉积物的组成和超结构外观分为三类:1)肾小球病(GP),带有有组织的MIG沉积物(免疫球蛋白[AL和AH}溶质膜[Al and ah} 8oloidisis [Al and ah} 8oloilidisis,Cyoglobobulobulic ogglobulic gp,Cyroglobulic GP,Immunotactactoid Gp,Light Chapoid Gp,Light Chandelline Cyry)Cyry)compy-Cyry)pody pody pody; 2)具有非组织沉积物的GP(单克隆IG沉积疾病[LCDD,HCDD,LHCDD],带有MIG沉积物[PGNMID]的增殖性肾小球肾炎[PGNMID]); 3)无IG沉积的GP(与MIG相关的C3GP和血栓性微血管病)。通过分析肾脏症状,尤其是蛋白尿,以及存在暗示性的肾上腺外表现,提出了每种特有MGRS相关的肾脏疾病的诊断。在大多数情况下,需要进行轻度,免疫荧光和电子显微镜研究,有时需要通过细胞瘤分析完成,在大多数情况下进行诊断确认是需要进行的。有必要识别和定量致病性MIG(SPEP,UPEP,血清和尿液免疫固定,无血清光链)的详细血液学检查,并用于表征下面的克隆(骨髓流式细胞仪,细胞遗传学)。敏感技术,例如基于RNA的Ig库测序,可能可用于检测微妙的克隆。早期诊断和通过以克隆为目标的化学疗法快速实现深血液学反应是影响长期肾脏和患者结局的主要因素。对浆细胞克隆的处理主要依赖于硼酸和基于抗CD38单克隆抗体的方案,这些方案不需要剂量适应,并且在肾脏损害患者中具有有利的疗效/毒性比。肾移植是选定的终末期肾脏疾病患者的宝贵选择,如果在手术之前已经实现了深层稳定的血液学反应(≥VGPR)。
savara Inc.(“ Savara”或“ Company”)警告您,本演讲中对历史事实的描述中的陈述是前瞻性的陈述,可以通过使用诸如“期望”,“预期”,“计划”,“预期”,“预期”,“相信”,“相信”和“ Will”等单词来识别。此类陈述包括但不限于有关潜在的健康福利和风险以及预计开发时间表的陈述;监管提交的时间;监管批准的潜力和影响; Molbreevi的潜在可寻址患者人数,市场规模,商业机会和竞争格局; Savara的商业发布计划活动,包括疾病宣传运动,GM-CSF自动抗体测试,计划的基础设施以及预期的招聘以及这些活动的潜在影响;以及我们资源的充分性,以资助我们的发展计划的进步和额外资本的潜在来源。Savara实际上可能不会及时实现其任何计划或产品开发目标,或者有些实现,或者以其他方式执行其当前意图,或者满足其前瞻性陈述中披露的期望或预测,并且您不应对这些前瞻性陈述不当依赖。这些前瞻性陈述基于Savara的当前期望,并涉及可能永远无法实现或可能被证明是不正确的假设。实际结果和事件的时机可能与由于各种风险和不确定性而导致的前瞻性陈述中的预期有重大差异,其中包括而不受限制地与我们成功发展,获得Molbreevi Apap的Molbreevi的规定批准相关的风险;与广泛的健康问题和地缘政治条件对我们的业务和运营的影响有关的风险和不确定性;与未来的未来负债和业务运营所需的未来现金利用和储备有关的能力相关的风险和不确定性;成功为我们的产品候选人进行临床试验的能力;足够的资源的可用性以及Savara根据需要筹集额外资金的时间和能力的资金。在Savara向美国证券交易委员会提交的萨瓦拉面临的风险和不确定性,包括我们的8-K表格上的文件,我们截至2023年12月31日截至12月31日的10-K表格的年度报告,以及我们关于季度的季度报告,截至2024年9月30日截至9月30日的季度。
抽象背景:人白细胞抗原(HLA-G)在炎症和自身免疫性疾病中起作用。HLA-G基因的变异可能会对类风湿关节炎(RA)产生影响。这项研究检查了多态性 +3142G> c和14 bp ins/del对埃及RA患者队列中对治疗的疾病敏感性,活性,严重性和对治疗的反应的影响。方法:这项病例对照研究是对75例RA和75名健康患者进行的。HLA-G RS1063320(+3142G> c)和RS66554220 14 BP插入(INS)/DELETION(DEL)变体分别使用聚合酶链反应 - 反应片段片段长度多态性多态性(PCR-RFP)和PCR技术进行了基因分型。结果:我们的发现不支持HLA-G 14 BP INS/DEL或HLA-G +3142G> C变体和RA敏感性之间的关联。皮下结节和延长的早晨刚度与HLA-G +3142G> c的G等位基因基本相关。我们使用疾病活性得分28(DAS-28)来寻找HLA-G基因变异与疾病活性之间的相关性,但我们找不到一种。更高水平的C反应性蛋白(CRP)和自身抗体(抗抗抗素抗蛋白质抗体(ACPA)和ACPA +类风湿因子(RF)已与GG基因型和HLA-G-G + 3142G> c的G等位基因有关。发现较高的类风湿关节炎严重程度量表(RASS)与HLA-G+3142G> C多态性和RA严重程度有关。发现14 bp ins/del多态性和治疗反应显着相关。发现治疗反应和多态性。患有DEL/DEL基因型和DEL等位基因的患者对治疗的令人满意的反应比例明显更高。结论:在这组研究的RA患者组中,HLA-G基因的14 bp ins/del和 +3142g> c似乎与RA易感性有关。但就自身抗体的产生,严重程度,临床表型和治疗反应能力而言,它可能是疾病表型的遗传调节剂。在这方面,我们建议这些多态性不是作为RA发作的危险因素,而是作为疾病修饰剂。患有DEL/DEL基因型和DEL等位基因的患者对治疗的令人满意的反应比例明显更高。关键词:埃及,遗传,多态性,人白细胞抗原G,类风湿关节炎。
•文化变化:1型糖尿病意识和筛查将需要主要改变初级保健。初级保健提供者(PCP)已经有很多疾病和病情值得关注。他们可以再接受一个,并且会对它感到满意吗?•容量和基础设施:大多数PCP和内分泌方法都延长了。并非所有实验室设施都准备对1型糖尿病自身抗体进行血液测试。此外,大多数电子健康记录(EHR)系统没有设置以捕获必要的数据。•影响力:糖尿病护理专业人员通常是从处于危险中的人中删除的一个或多个步骤。他们需要能够吸引不是患者的人。•成本和报销:1型糖尿病自动抗体测试的实施成本很高。该领域担心此护理的计费和承保范围的复杂性。工作流程的每个步骤都必须是可偿还的,以扩展。ICD-10代码针对临床前1型糖尿病的代码仍在等待中。(后来证实,第1阶段和第2阶段确实算作1型糖尿病诊断,这意味着教育和护理有资格进行报销。)•患者的看法:处于危险中的人可能会受到对糖尿病的常见误解的影响,从1型和2型糖尿病之间的差异开始。此外,以人们容易理解的方式传达基于百分比和时间的风险通常很棘手(例如,“您的孩子有44%的机会在五年内患上1型糖尿病。”)。•社交和情感健康:在任何阶段,一种1型糖尿病诊断都具有情感和心理影响。人们可能会犹豫屏幕,因为他们宁愿不知道结果。•倡导:对健康保险,人寿保险,工作申请,军事入伍,飞行员许可等有什么影响?需要倡导才能防止糖尿病歧视1型早期糖尿病患者。•毫无伤害:糖尿病护理社区对1型糖尿病的发展充满热情,但不想过分提倡治疗的影响,忽略与治疗相关的风险,或者给人们带来错误的安全感。评估风险和福利对于许多PCP和一些专家来说是一个具有挑战性的问题。文献引用的一般人口风险为0.5%,有多少型1型糖尿病并不是一个直接的话题。
自 2019 年冠状病毒病 (COVID-19) 大流行爆发以来,我们已经了解了很多有关该疾病的发展、临床体征和症状、诊断、治疗、病程和结果的知识(参考文献 1、2)。COVID-19 的病程包括多个阶段,这也决定了所需的治疗策略(参考文献 1 – 3)。第 1 期是病毒感染早期,伴有发烧、呼吸道或胃肠道症状和淋巴细胞减少。第 2 期是肺部阶段。它分为两个亚期:非缺氧血症第 2a 期和缺氧血症第 2b 期。最后,第 3 期是多系统炎症综合征 (MIS) 的阶段,偶尔伴有细胞因子风暴作为致病特征(参考文献 1 – 3)。值得注意的是,真正的“细胞因子风暴”仅发生在 2% 的患者和 8-11% 的重症患者中(参考文献 4)。COVID-19 的晚期阶段还涉及缓激肽风暴(参考文献 5)、凝血和补体级联的激活(参考文献 6)、内皮炎、血管渗漏和水肿(参考文献 6)、微血栓事件(参考文献 4)和中性粒细胞胞外陷阱 (NET)(参考文献 7)等机制。由于这些抗炎药物在 MIS 期间最有效,因此应通过临床、影像学和实验室标志物来确认(参考文献 1、8-10)。实验室生物标志物,例如 C 反应蛋白、铁蛋白、D-二聚体、心肌肌钙蛋白 (cTn)、NT-proBNP、淋巴细胞减少、中性粒细胞与淋巴细胞比率以及(如果有)循环白细胞介素 6 (IL-6) 水平与 2b-3 期 MIS 以及 COVID-19 的结果有关(参考文献 9 - 11)。作为风湿病学家和免疫学家,我们遇到了许多重要的问题,这些问题与自身免疫以及风湿病和肌肉骨骼疾病 (RMD) 特别相关。COVID-19、自身免疫、全身炎症和 RMD 之间可能存在多种相互作用。(1)COVID-19 可能会增加自身抗体产生和自身免疫的风险(参考文献 12)。 (2) 自身免疫炎症性 RMD 可能会增加对严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 感染的易感性(参考文献 13)。(3)现已清楚,在 COVID-19 的晚期阶段,全身炎症和 MIS 而不是原始病毒感染可能主导临床表现(参考文献 3、8、9、14-16)。(4)因此,成功用于治疗 RMD 的免疫抑制药物,如皮质类固醇、生物制剂或 Janus 激酶 (JAK) 抑制剂,也可用于治疗严重 COVID-19 和全身炎症患者(药物再利用)(参考文献 17-19)。(5)在 COVID-19 期间如何管理自身免疫性 RMD 患者也至关重要(参考文献 20-23)。 (6) RMD 患者接种 SARS-CoV-2 疫苗也是一个基本问题(参考文献 24、25)。在这里,我们将简要讨论与自身免疫、MIS 和 RMD 患者相关的所有这些问题。
Heumatoid关节炎是最常见的免疫疾病之一。它的主要表现是由对称,多关节疼痛和肿胀的特征,通常涉及手和脚的小关节。然而,类风湿关节炎是一种与多种共存疾病和外部表现相关的系统疾病。炎症性滑膜炎的发作是由于遗传因素和特定环境暴露的相互作用而引起的。 疾病过程始于几年,直到临床明显的关节炎,并且表现为无症状免疫功能障碍的连续性,并在疾病可以分类为类风湿关节炎之前先进行了各个阶段。 本综述着重于血清阳性类风湿关节炎,其标志是自身抗体对翻译后修饰的蛋白质(包括抗柠檬酸蛋白质抗体)(ACPAS(ACPAS,被测量为抗循环柠檬酸柠檬酸酯肽抗体抗体));结合免疫球蛋白的FC部分的特异性自身抗体,称为类风湿因子;或两种抗体类型。 血浆类风湿关节炎是一个独立的实体,标志着多重关节炎,但定义不明的致病机制。 血清神经性关节炎的过程通常对关节的破坏性较小,1但是治疗方法类似于血清阳性疾病的方法。 与牛皮癣这样的免疫疾病相反,牛皮癣在很大程度上取决于主要的白细胞介素-23-室内17途径,类风湿关节炎具有多个潜在的临床表现途径。炎症性滑膜炎的发作是由于遗传因素和特定环境暴露的相互作用而引起的。疾病过程始于几年,直到临床明显的关节炎,并且表现为无症状免疫功能障碍的连续性,并在疾病可以分类为类风湿关节炎之前先进行了各个阶段。本综述着重于血清阳性类风湿关节炎,其标志是自身抗体对翻译后修饰的蛋白质(包括抗柠檬酸蛋白质抗体)(ACPAS(ACPAS,被测量为抗循环柠檬酸柠檬酸酯肽抗体抗体));结合免疫球蛋白的FC部分的特异性自身抗体,称为类风湿因子;或两种抗体类型。血浆类风湿关节炎是一个独立的实体,标志着多重关节炎,但定义不明的致病机制。血清神经性关节炎的过程通常对关节的破坏性较小,1但是治疗方法类似于血清阳性疾病的方法。与牛皮癣这样的免疫疾病相反,牛皮癣在很大程度上取决于主要的白细胞介素-23-室内17途径,类风湿关节炎具有多个潜在的临床表现途径。从慢性疾病中,疾病从临床前类风湿关节炎进展,涉及患者在患者之间可能有所不同的致病途径和细胞谱系,这会使治疗效果复杂化。尽管临床表型非常相似,但某些途径在非分裂患者中占主导地位,但对靶向疗法的临床反应的多样性强调。在过去的三十年中,类风湿关节炎的治疗中存在革命性变化,但许多患者仍然患有持续性疾病。鉴定个别患者中特定的致病机制的能力将通过将治疗定向到这些靶标来改善预后。血清阳性类风湿关节炎的临床前阶段的特征是免疫,通常与粘膜表面相关,包括口腔腔,肺和胃肠道,以及局部和系统的ACPA。可以在血液中检测到这些自身抗体的中位数在关节炎发作前4。5年。2随着自身抗体水平的增加,类风湿关节炎的风险随着时间而增加。随着这种临床前阶段的发展,随之而来的是针对蛋白质表位阵列的ACPA,同时血液中的Pro炎症蛋白的增加,最终导致关节炎症。3对改变肽的免疫反应不仅限于柠檬化;甲状腺素,丙二醛 - 乙醛加合物形成和其他蛋白质修饰
自2019年冠状病毒病(Covid-19)大流行以来,我们已经对疾病的发育,临床体征和症状,诊断,治疗,病程和外表现有了很多了解(参考文献1、2)。COVID-19的过程包括多个阶段,这也决定了指定的治疗策略(参考文献1-3)。第1阶段是发烧,呼吸道或胃肠道症状和淋巴细胞减少症的早期病毒感染期。阶段2是肺相。它分为两种替代:非甲状体学期2a和低氧阶段2B。最后,第3阶段是多系统炎症性合成(MIS)的阶段,偶尔伴有细胞因子风暴作为致病性(参考文献1-3)。重要的是要注意,仅2%的患者和8-11%的严重患者发生了真正的“细胞因子风暴”(参考4)。COVID-19的晚期阶段还涉及Bradykinin Storm(参考文献5),激活和补体级联反应(参考6),内皮炎,血管泄漏和水肿(参考6),微实性事件(参考4)和中性粒细胞外陷阱(Net)(参考7)。由于这些抗炎药在MIS期间最有效,因此应通过临床,成像和实验室标记来证实这一点(参考文献1,8-10)。作为风湿病学家和免疫学家,我们遇到了许多与自身免疫性以及风湿性和肌肉骨骼疾病(RMD)特别相关的重要问题。(1)COVID-19可能会增加自身抗体生产和自身免疫性的风险(参考文献Laboratory biomarkers, such as C-reactive protein, ferritin, D-dimer, cardiac troponin (cTn), NT-proBNP, lymphopenia, neutrophil-to-lymphocyte ratio, and, if available, circulating interleukin 6 (IL-6) levels have been associated with MIS in Stages 2b-3 and also with the outcome of COVID-19 (Refs 9 - 11)。COVID-19,自身免疫,全身炎症和RMD之间可能存在多种相互作用。12)。(2)自身免疫性炎症RMD可能会增加敏感性急性呼吸综合征2(SARS-COV-2)感染(参考文献13)。(3)现在很明显,在Covid-19的更高级阶段,系统性炎症和MIS,而不是原始的病毒感染可能占主导地位(参考文献3、8、9、14-16)。(4)由于上述结果,成功用于治疗RMD的免疫抑制药物,例如皮质类固醇,生物剂或Janus激酶(JAK)抑制剂,也可能适用于严重的COVID-19和全身性炎症患者(药物重复使用)(药物重复使用)(参考)17-19-19-19-19-19-19-19。(5)在19009年期间如何管理自身免疫性RMD的患者也至关重要(参考文献20-23)。(6)针对SARS-COV-2的RMD患者的疫苗接种也是一个有趣的问题(参考文献24,25)。在这里,我们将简要讨论与自身免疫,MIS和RMD患者有关的所有这些问题。
1型糖尿病(T1D)是一种免疫介导的疾病,其特征是胰腺内兰格汉(Langerhans)胰岛中产生胰岛素的B细胞的逐渐丧失(1)。胰岛素短缺导致血糖稳态的危险,这可能导致潜在的威胁生命的急性和慢性并发症(2)。自身免疫性破坏过程的触发器尚不清楚。T1D发病率在全球范围内正在上升,但存在着相当大的国家 - 国家差异,世界上某些地区的患病率远大于其他地区(3)。尚不清楚的原因,但是强烈怀疑遗传因素和环境因素之间的相互作用(4)。尽管T1D护理的进步取得了进步,但这种疾病仍与大量的医学,心理和财务负担有关。此外,低血糖和高血糖是持续存在的潜在威胁生命的并发症(5)。最近,居住在人类肠道的复杂微生物群落等环境变量(例如肠道微生物群)因其在T1D发病机理中的潜在作用而引起了人们的关注。人类的肠道微生物组在生命的第一年发展,其构成与成年人相似(6,7)。肠道微生物组和免疫系统发育的成熟是密切相关的过程(8)。根据Knip及其同事对肠道微生物组和T1D之间关系的研究,患有胰岛自身抗体的儿童更有可能具有更大的细菌/蛋白质比率和较低的Shannon多样性,而Shannon的肠道微生物组的多样性较低(9)。这些机制其他研究表明,具有T1D高风险的儿童具有相当大的菌群菌菌和菌菌(10)菌(10)的积累,并且与自身抗体阳性有关(11)。T1D患者的浓度较低,可产生乳酸和短链脂肪酸(SCFA)(12)。在T1D发作时也可以检测到乳酸杆菌数量减少和双杆菌的数量(13)。已经进行了几种横断面 - 对照调查揭示了T1D患者和健康对照组受试者之间肠道微生物组的差异。t1d儿童的细菌植物具有较大的细菌植物,并且两种主要的双杆菌种类的丰度降低(14)。一方面,Mejı́A-Leo n n和Barca比较了新诊断的T1D患者的肠道微生物组,长期存在T1D持续时间和健康对照的患者。发现新诊断的T1D患者具有较高水平的细菌,而健康的对照组的PREVOTELLA水平较高(15)。另一方面,只有少数研究研究了肠道微生物组在长期T1D中的作用(16)。肠道微生物组可能通过影响肠道通透性和分子模仿并调节先天和适应性免疫系统(17),在T1D发病机理中起关键作用(17)。但是,T1D中的肠道营养不良不仅可能起致病作用。的确,它可能会影响已经患有该疾病的个体的血糖控制。在2型糖尿病患者或健康受试者中进行的研究表明,肠道微生物群可以影响宿主血糖控制的几种提出的分子机制。
几条证据表明,B细胞在严重的全身性硬化症(SSC)病理生理学中的作用:B细胞刺激因子水平升高,干扰了B细胞稳态,随着幼稚B细胞的扩展以及鼠纤维化模型中B-Cell Depettion的抗纤维化效应的降低,降低了B细胞的稳态。首次随机对照试验显示CD20靶向抗体利妥昔单抗(RTX)2 3 3;然而,RTX在SSC中的治疗功效仍然存在争议:虽然一项试验表现出显着改善的皮肤,但在另一项研究中,2 RTX降低了强迫生命力(FVC)的下降,但与环形苯丙胺控制臂相比具有相似的影响。3与严重的红斑红斑(SLE)一样,我们推测CD20+ B细胞的耗竭可能不足以作为B细胞前体(在SSC中特别扩展,plasmablasts),并且可以通过CD20来靶向plasmablasts,而plasmablasts可能会产生自动抗体的产生。值得注意的是,自体干细胞移植克服了这些局限性,并在严重的SSC中表现出显着的治疗效果。4但是,与移植相关的死亡率很高。因此,对深层和宽CD19+ B细胞耗竭的更耐受治疗可能更有效。最近,CD19-细胞抗原受体(CAR)T细胞在难治性SLE 5中显示出显着的作用,并且在患有抗合成酶综合征患者的疗效的第一个证据中表现出了第一个证据,6表明通过CD19卡细胞拦截B细胞驱动的自身免疫性疾病的原理可行性。在这里,我们首次报道了用CD19-CAR T细胞治疗严重治疗难治性SSC的患者。一名60岁的男子出现了弥漫性皮肤SSC,在基线前22个月前22个月,在基线28个月前,基线和Raynaud现象开始前22个月前22个月发作。在基础线上,患者出现了弥漫性心肌纤维化(心脏MRI),肺纤维化(高分辨率计算机断层扫描),肺动脉高压(I类(I类),基于右心导管的结果:右心脏导管的结果:33 MM HG(> 33 MM HG)的肺部和后肺后高压率(I级) MM HG(> 14)和3木单元(> 2)),雷诺(Raynaud)现象和腕关节炎的肺血管耐药性。他具有阳性抗核抗体滴度和抗RNA聚合酶III自身抗体(亚基RP11)。以前失败的免疫抑制剂包括甲氨蝶呤(15 mg/周,治疗持续时间为3个月)和霉菌酸盐(剂量2 g/day持续23个月)。环磷酰胺。免疫抑制在淋巴结序列前进行了锥形,并在CAR T细胞输注前4周停止。CAR T细胞是由通过神经术获得的自体T细胞产生的。t细胞被宽性病毒载体(Miltenyi)转导,并通过自动化系统(Clinicmacs Prodigy)扩展。5在剂量减少淋巴结(50%)后,由于肾上腺素损伤(12.5 mg/m 2;天-5,-4和-3)和环磷酰胺(500 mg/m²,第-3天,-3),1×106 CAR T细胞/kg。汽车T细胞CAR T细胞从第3天开始迅速扩展(总计:0.3个细胞/μL,CD3+ T细胞的0.1%汽车)到第9天(1275/μL; 66,35%CD3+ T细胞的汽车;图1A,B)。
4。Parkkola A,Harkonen T,Ryhanen SJ,Ilonen J,Knip M. Finnish Pedi-Atric糖尿病R. 1型糖尿病和Phe notype and Phe-notype and Phe-notype and Phe-Notype和New Semain-New Sairnation-type的家族史。糖尿病护理。2013; 36(2):348-354。 5。 Ziegler AG,Danne T,Dunger DB等。 主要预防β细胞自身免疫性和1型糖尿病 - 预防自身免疫性糖尿病(GPPAD)观点的全球平台。 mol代谢。 2016; 5(4):255-262。 6。 Ziegler AG,Rewers M,Simell O等。 血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。 JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2013; 36(2):348-354。5。Ziegler AG,Danne T,Dunger DB等。 主要预防β细胞自身免疫性和1型糖尿病 - 预防自身免疫性糖尿病(GPPAD)观点的全球平台。 mol代谢。 2016; 5(4):255-262。 6。 Ziegler AG,Rewers M,Simell O等。 血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。 JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。Ziegler AG,Danne T,Dunger DB等。主要预防β细胞自身免疫性和1型糖尿病 - 预防自身免疫性糖尿病(GPPAD)观点的全球平台。mol代谢。2016; 5(4):255-262。 6。 Ziegler AG,Rewers M,Simell O等。 血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。 JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2016; 5(4):255-262。6。Ziegler AG,Rewers M,Simell O等。血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。JAMA。2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2013; 309(23):2473-2479。7。Krischer JP,Lynch KF,Schatz DA等。遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。糖尿病学。2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2015; 58(5):980-987。8。Bingley PJ,Boulware DC,Krischer JP。自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。糖尿病学。2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2016; 59(3):542-549。9。Anand V,Li Y,Liu B等。胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。2021; 44(10):2269-2276。10。Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。nat。基因。11。精细模拟,跨乳液和基因组分析确定了1型糖尿病的因果变异,细胞,基因和药物靶标。2021; 53(7):962-971。Lambert AP,Gillespie KM,Thomson G等。 人类白细胞抗Gen II类基因型定义的儿童期1型糖尿病的绝对风险:英国基于人群的研究。 J. Clin。 内分泌。 METAB。 2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。Lambert AP,Gillespie KM,Thomson G等。人类白细胞抗Gen II类基因型定义的儿童期1型糖尿病的绝对风险:英国基于人群的研究。J. Clin。 内分泌。 METAB。 2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。J. Clin。内分泌。METAB。 2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。METAB。2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。2004; 89(8):4037-4043。12。nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。糖尿病。2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。2013; 62(6):2135-2140。13。Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。am。J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。J. Hum。基因。1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。1996; 59(5):1134-1148。14。Erlich H,Valdes AM,Noble J等。HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。糖尿病。2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。2008; 57(4):1084-1092。15。Hippich M,Beyerlein A,Hagopian WA等。对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。糖尿病。2019; 68(4):847-857。16。Bonifacio E,Beyerlein A,Hippich M等。plos med。2018; 15(4):E1002548。 17。 proc。 natl。2018; 15(4):E1002548。17。proc。natl。遗传评分以分层发展多种胰岛自身抗体和1型糖尿病的风险:对儿童的前瞻性研究。Aly TA,IDE A,Jahromi MM等。 1A型糖尿病的极端遗传风险。 学院。 SCI。 U. S. A. 2006; 103(38):14074-14079。 18。 Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J. 对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。 丹麦糖尿病研究小组。 糖尿病学。 1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。Aly TA,IDE A,Jahromi MM等。1A型糖尿病的极端遗传风险。学院。SCI。 U. S. A. 2006; 103(38):14074-14079。 18。 Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J. 对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。 丹麦糖尿病研究小组。 糖尿病学。 1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。SCI。U. S. A.2006; 103(38):14074-14079。 18。 Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J. 对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。 丹麦糖尿病研究小组。 糖尿病学。 1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。2006; 103(38):14074-14079。18。Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J.对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。丹麦糖尿病研究小组。糖尿病学。1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。1993; 36(9):870-875。19。Sharp SA,Rich SS,Wood AR等。改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。糖尿病护理。2019; 42(2):200-207。20。Winkler C,Krumsiek J,Buettner F等。1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。糖尿病学。2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。2014; 57(12):2521-2529。21。Bonifacio E,Weiss A,Winkler C等。与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。糖尿病护理。2021; 44:2260-2268。