‡皇家比利时自然科学研究所(RBINS),运营局自然环境(OD自然),水上和地层生态学(ATECO),海洋生态与管理(Mareco),Rue Vautier 29,1000,1000,Brussels,Brussels,Bilgium§§tethys Research Institute,Tethys Research Institute,Viale G. B. B. B. B. B. B. B. Gadio 2,20122年2月2日,2012年2月2日| Greenov Ites,10 Docteur Joseph Audic,56000,法国Vannes。 13009 Marine,70 Rue Jean Doucet,16470,法国圣米歇尔»Interniversity Microectronics Center(IMEC),75 Kapeldref,3001,比利时Sirehna,5 Rue de l'albrane,44340,Buguena,Buguenais,france,弗朗西斯,弗朗西斯,弗朗西斯,弗朗西斯,弗朗西斯92 Group,5 Rue de l'Halbrane,44340,法国Bouguenais
驾驶中的自动化将使驾驶员的角色从演员变成被动主管。尽管车辆将负责驾驶演习,但驾驶员将需要依靠自动化并了解其决定以建立他们与车辆之间的信任关系。最近在对话剂和侵害机器中取得了进展。此外,在人类和马尼斯之间的信任建立中似乎很有希望。我们认为,在汽车环境中研究情绪对话剂的使用至关重要,以在驾驶员与车辆之间建立牢固的关系。在这个研讨会中,我们旨在收集研究人员和行业从业人员,从HCI,ML/AI,NLU和心理学的不同费尔德(Felds)进行集思广益,以围绕偏爱机器,同理心和对话代理进行集思广益,并特别关注人类车辆互动。诸如“汽车中多模式和同情代理的特殊性是什么?”,“代理如何使驾驶员意识到
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
硬件技术和分析方法的进步使脑电图 (EEG) 实验具有越来越多的移动性。除了神经活动之外,移动大脑/身体成像 (MoBI) 研究还可以记录各种类型的数据,例如运动或眼动追踪。尽管有可用的选项可以以标准化的方式分析 EEG 数据,但它们并不能完全涵盖来自移动实验的复杂多模态数据。因此,我们提出了 BeMoBIL 管道,这是 MATLAB 中一个易于使用的管道,支持时间同步处理多模态数据。它基于 EEGLAB 和 fieldtrip,由用于 EEG 预处理和随后的源分离的自动化功能组成。它还提供用于运动数据处理和从不同数据模态中提取事件标记的功能,包括使用独立成分分析从 EEG 中提取眼动和步态相关事件。该管道引入了一种新的稳健方法,用于基于感兴趣区域的独立 EEG 成分的组级聚类。最后,BeMoBIL 管道在各个处理步骤中提供分析可视化,保持分析透明并允许对结果进行质量检查。所有参数和步骤都记录在数据结构中,可以使用相同的脚本完全复制。该流程使(移动)EEG 和身体数据的处理和分析更加可靠,并且不受个别研究人员的先前经验的影响,从而促进了 EEG 的一般使用,特别是 MoBI。这是一个开源项目,可在 https://github.com/BeMoBIL/bemobil-pipeline 下载,允许将来进行社区驱动的改编。
硬件技术和分析方法的进步使脑电图 (EEG) 实验具有越来越多的移动性。除了神经活动之外,移动大脑/身体成像 (MoBI) 研究还可以记录各种类型的数据,例如运动或眼动追踪。尽管有可用的选项可以以标准化的方式分析 EEG 数据,但它们并不能完全涵盖来自移动实验的复杂多模态数据。因此,我们提出了 BeMoBIL 管道,这是 MATLAB 中一个易于使用的管道,支持时间同步处理多模态数据。它基于 EEGLAB 和 fieldtrip,由用于 EEG 预处理和随后的源分离的自动化功能组成。它还提供用于运动数据处理和从不同数据模态中提取事件标记的功能,包括使用独立成分分析从 EEG 中提取事件。该管道引入了一种新的稳健方法,用于基于感兴趣区域的独立 EEG 成分的组级聚类。最后,BeMoBIL 管道在各个处理步骤中提供分析可视化,保持分析透明并允许对结果进行质量检查。所有参数和步骤都记录在数据结构中,可以使用相同的脚本完全复制。该流程使(移动)EEG 和身体数据的处理和分析更加可靠,并且不受个别研究人员的先前经验的影响,从而促进了 EEG 的一般使用,特别是 MoBI。这是一个开源项目,可在 https://github.com/BeMoBIL/bemobil-pipeline 下载,允许将来进行社区驱动的改编。
段。由参考基因组的定向,连续的基因组间隔,用⟨染色体,起始坐标,端坐标⟩表示。一个供体染色体被描述为段的有序序列。断点。通过一对非粘附坐标描述了一个断点,该坐标表示从一个段中的捐赠者中的一个段过渡到另一个段。染色体组。一组所有同源供体染色体具有相同的染色体认同。染色体认同是由最有代表的丝粒确定的,如果Chro-Mosome是分散的,则由其组成段的染色体起源最多。染色体簇。一对染色体组表示为依赖。染色体簇是依赖染色体组的连接成分。染色体簇通常由一组规范结构变体定义,每个变体都有ISCN命名法(细胞遗传学命名的国际标准)。分子核型。提出的文件格式明确描述了核苷酸级分辨率的核型。此文件格式包含一个跨越整个参考基因组的段的字典,然后是一组有序的片段序列,每个片段代表染色体。
摘要 - 支撑连接和自动化车辆(CAV)的通信和计算服务的特征是响应时间和可靠性方面的严格要求。满足这些要求对于确保道路安全和交通优化至关重要。在车辆中托管这些服务的概念上简单解决方案增加了成本(主要是由于计算基础架构的安装和维护),并且可能会过多地排出电池电池。可以通过多访问边缘计算(MEC)来解决此类缺点,该计算包括在靠近设备的网络节点中部署计算能力(在这种情况下为车辆),以满足严格的CAV要求。但是,在哪些条件下,MEC可以支持CAV要求和哪些服务。为了阐明这个问题,我们使用众所周知的开源仿真工具,即Omnet ++,SimU5G,静脉,INET和Sumo进行了模拟活动。因此,我们能够为MEC提供CAV的现实检查,并指出MEC中必须安装的计算能力,以支持不同的服务以及单个MEC节点可以支持的车辆数量。我们发现,根据所考虑的服务,此类参数必须有很大差异。这项研究可以作为网络运营商计划未来部署MEC来支持CAV的初步基础。索引项-5G模拟; MEC;连接和自动车辆
抽象工业系统资源能够生成大量数据。这些数据通常采用异质格式并分发,但它们表示可以挖掘可以允许部署智能管理工具进行生产活动的信息。为此,有必要使用人工智能(AI)模型来实施知识提取和预测过程,但是对于非专家用户而言,对预期AI模型的选择和配置往往越来越复杂。在本文中,我们提出了一种方法和一个软件平台,该方法可能允许不熟悉AI的工业参与者选择和配置算法,以最佳地适应他们的需求。因此,该方法基本上是基于自动化的机器学习。产生的平台有效地可以在AI算法和超参数配置的组合之间做出更好的选择。也可以提供重新塑造算法和模型的解释性的功能,从而提高这些模型在实践用户社区中的可占用性。所提出的方法已应用于预测维护的领域。当前测试是
1* 英国伦敦国王学院生物医学工程与成像科学学院早期生命成像研究系。2 英国伦敦巴兹健康 NHS 信托神经放射学系。3 英国伦敦国王学院生物医学工程与成像科学学院生物医学计算系。4 英国伦敦圣乔治大学医院 NHS 基金会神经放射学系。5 英国伦敦盖伊和圣托马斯 NHS 基金会神经放射学系。6 英国伦敦伦敦国王学院妇女与儿童健康系。7 英国坎伯利西门子医疗有限公司 MR 研究合作部门。8 英国伦敦国王学院生物医学工程与成像科学学院成像物理与工程研究系。