• 按时间和日期、管辖区、命中类型、用户、地理围栏等进行超快速搜索和过滤 • 在现场检测到热门列表匹配时管理电子邮件和/或短信警报 • 创建和发布自定义热门列表以供整个组织跨平台使用 • 轻松将报告数据导出为 CSV 以用于其他数据库平台 • 安全、可靠且有保障。即时部署。高度可扩展 • 与 Aero Ranger Capture、Checkpoint 和 Chariot 系统完全集成
简介:慢性心力衰竭导致许多患者住院,尤其是那些年老且不遵守治疗 1 的患者。这种住院通常可以通过前几周体重增加 2 和外周水肿增加来预测。对于不遵守每日体重记录的患者,我们假设从零依从性全自动远程监控解决方案中收集可靠的数据以评估外周水肿将减少住院并改善护理。
摘要在计算组织病理学领域,计算机辅助诊断系统对于获得各种疾病的患者诊断和有助于精确医学很重要。因此,已经报道了许多关于数字病理图像的自动分析方法的研究。在这项工作中,我们讨论了一种自动提取和疾病阶段分类方法多形胶质母细胞瘤(GBM)组织病理学图像。在本文中,我们使用深层卷发神经网络(深CNN)同时获取功能描述符和分类方案。此外,在这个充满挑战的分类问题中,与其他流行的CNN进行了客观和定量的比较。使用癌症基因组图像的胶质瘤图像的实验表明,我们的网络平均分类准确性为96:5%,而对于更高的交叉验证,其他网络的性能相似,较高的精度为98:0%。深CNN可以以高精度从GBM组织病理学图像中提取显着特征。总的来说,具有深CNN的组织病理学图像的GBM疾病阶段分类非常有前途,并且在大规模组织病理学图像数据的可用性中,深CNN非常适合解决这个挑战性问题。
乳房D类型是乳腺癌造成疾病的独立危险因素,研究人员进行了数量测试,这可能是在这组患者中进行筛查的补充工具。对比增强乳房X线摄影(CEM)是一种具有对比剂施用的诊断方法,可进行对比剂的应用,可进行低能图像采集(这是FFDM等效性)和带有脂肪组织衰减的减法图像和可见的后交换后病理学增强灶[7-9]。该检查使用新血管生成现象,发生在局灶性病变中[10-13]。contrast增强,并显示了恶性病变的真实程度,使病变成分的可视化和其他焦点可以被FFDM上的脂肪组织重叠[14,15]。根据进行的研究,CEM比FFDM显示出更高的灵敏度和准确性,并促进了对更多局灶性病变的检测[16-18]。到目前为止进行的研究表明,CEM具有可比且经常具有更高的诊断效率作为乳房杂志的共振成像(BMRI),这被认为是最准确的方法[19-22]。因此,CEM性能的指示与BMRI相似,即基本成像检查(FFDM或手持超声 - HHU)的不确定结果,在实施治疗前的分期,新辅助化学治疗过程中的治疗反应监测以及乳腺癌手术后的患者检查[23]。CEM为患有幽闭恐惧症或BMRI禁忌症患者构成了替代方案。EXA的开采比BMRI更快,通常由患者容忍。它的缺点是在小剂量中进行电离施用的必要性,静脉内碘对比剂的给药,这可能会导致潜在的染色体反应和肾脏损害和乳房压缩,这是患者不适的来源,以及运动型工件的产生者。在CEM指南下的活检尚不广泛。自动乳房超声(ABUS)是一种基于超声的新诊断方法。与HHUS相反,此EXA开采是由电 - 放射学家进行的。患者仰卧位置,超声头放置在4个沿着乳房移动的基本定位中。一个典型的EXA矿化由前后,侧面和内侧视图中每个乳房的3张自动扫描组成。获得的图像被发送到可以重复审查的工作站,或者可以创建多平台重建[24-27]。检查不需要任何特殊的准备,并且患者可以很好地耐受。到目前为止进行的研究证实,使用ABU作为FFDM的附加工具允许检测更多局灶性病变,主要是在腺体乳房的情况下[28-31]。进行ABU的主要指示是在无症状患者中,尤其是那些乳房密集的患者中进行互补筛查。ABU的优点包括脱落操作员的依赖,图像存储在专用
摘要信息和无线通信技术的快速发展,以及最终用户数量的大幅度增加使无线电频谱比以往任何时候都更加拥挤。此外,随着电磁环境正在发展并变得越来越复杂,提供稳定且可靠的服务是具有挑战性的。因此,迫切需要更可靠和智能的通信系统,以提高频谱效率和服务质量以提供网络资源的敏捷管理,从而更好地满足未来无线用户的需求。特别是自动调制识别(AMR)在大多数智能通信系统中起着至关重要的作用,尤其是随着软件定义无线电(SDR)的出现。AMR是在认知无线电(CR)中执行频谱传感的一项必不可少的任务。多亏了深度学习(DL)应用中的显着进步,已经提供了新的和强大的工具,可以解决该领域的问题。因此,今天,将DL模型整合到AMR中已引起了许多研究人员的关注。这项工作旨在提供针对单输入单输出(SISO)和多输入多输出(MIMO)系统的最新机器学习(ML)AMR方法的全面最新审查。此外,将确定每个模型的体系结构,并在规范和性能方面进行详细的比较。最后,提供了开放问题,挑战和潜在的研究方向的概述以及讨论和结论。
神经细胞的形状像幼苗:大而圆的种子(细胞体)被一簇卷曲的根(树突)包围,而一根长茎(轴突)则向另一个方向延伸。这张图片以椭圆形显示了不同动物之间某些神经元细胞体位置的变化。每个神经元都是随机着色的。神经元在图中从上到下、从左到右排列,因为它们在线虫中的位置是从鼻子到尾巴(前后)和从背部到腹部(背腹)。来源:CC BY-ND 4.0 Toyoshima 等人,2020 年,DOI:10.1186/s12915-020-0745-2
大多数颅内动脉瘤(ICA)出现在脑血管树的特定部分上,名为Willis圈(Cow)。尤其是,它们主要出现在构成这种圆形结构的主要动脉分叉上的十个。因此,对于有效而及时的诊断,开发一些能够准确识别每个感兴趣分叉(BOI)的方法至关重要。的确,自动提取出现ICA风险较高的分叉将使神经放射学家快速浏览最令人震惊的地区。由于最近在人工智能上的效果,深度学习是许多模式识别任务的最佳性能技术。此外,各种方法是专门为医学图像分析目的而设计的。这项研究旨在帮助神经放射科医生迅速找到任何出现ICA发生风险的分叉。它可以看作是一种计算机辅助诊断方案,在该方案中,人工智能有助于访问MRI内感兴趣的区域。在这项工作中,我们提出了一种完全自动检测和识别构成威利斯圈子的分叉的方法。已经测试了几个神经网络架构,我们彻底评估了分叉识别率。
摘要。深部脑刺激 (DBS) 的术前路径规划是一个多目标优化问题,即在多个放置约束之间寻找最佳折衷点。它的自动化通常通过使用聚合方法将问题转变为单目标来解决。然而,尽管这种方法很直观,但它以无法找到所有最优解而闻名。在本文中,我们引入了一种基于多目标优势的 DBS 路径规划方法。我们将它与经典的多个约束的聚合加权和以及由神经外科医生对 14 个 DBS 病例进行的回顾性研究的手动规划进行了比较。结果表明,基于优势的方法优于手动规划,并且与传统的加权和方法相比,它涵盖了更多相关的最佳切入点选择,因为传统的加权和方法会丢弃外科医生可能喜欢的有趣解决方案。
背景和目标:阿尔茨海默病约占痴呆症病例的 70%。从 T1 加权结构磁共振扫描中可以轻松发现阿尔茨海默病引起的皮质和海马萎缩。由于在综合征的初期及时进行治疗干预对患病对象的病情进展和生活质量都有积极影响,因此阿尔茨海默病的诊断至关重要。因此,本研究依赖于开发一个强大而轻量级的 3D 框架 Brain-on-Cloud,该框架致力于通过改进我们最近的基于卷积长短期记忆的框架,并集成一组数据处理技术,以及调整模型超参数并评估其在独立测试数据上的诊断性能,从 3D 结构磁共振全脑扫描中有效学习与阿尔茨海默病相关的特征。方法:为此,在可扩展的 GPU 云服务上进行了四次连续实验。对它们进行比较,并调整最佳实验的超参数,直到达到最佳性能配置。同时,设计了两个分支。在 Brain-on-Cloud 的第一个分支中,在 OASIS-3 上进行训练、验证和测试。在第二个分支中,使用来自 ADNI-2 的未增强数据作为独立测试集,并评估 Brain-on-Cloud 的诊断性能以证明其稳健性和泛化能力。计算每个受试者的预测分数,并根据年龄、性别和简易精神状态检查进行分层。结果:在最佳状态下,Brain-on-Cloud 能够分别在 OASIS-3 和独立 ADNI-2 测试数据上以 92% 和 76% 的准确率、94% 和 82% 的灵敏度以及 96% 和 92% 的曲线下面积辨别阿尔茨海默病。结论:Brain-on-Cloud 是一种可靠、轻量且易于复制的框架,可用于通过 3D 结构磁共振全脑扫描自动诊断阿尔茨海默病,无需将大脑分割成各个部分即可表现出色。在保留大脑解剖结构的情况下,其应用和诊断能力可以扩展到其他认知障碍。由于其云特性、计算轻量和执行速度快,它还可以应用于实时诊断场景,提供及时的临床决策支持。
抗菌耐药性(AMR)的出现和发展是一个全球健康问题,到2050年每年可能造成约1000万人死亡(汤普森,2022年)。对这些(多)抗性细菌菌株的基因组的研究对于理解抗性的出现和循环至关重要。在过去的几十年中,高通量测序技术已得到了认真的改进,并且一次对数百种细菌菌株的完整基因组进行测序变得更加负担得起。作为对应物,这些实验会产生大量数据,需要通过各种生物信息学方法和工具来分析重建基因组的工具,因此可以确定其特定特征以及AMR的遗传决定因素。为了自动化多种菌株的生物信息学分析,我们开发了一种名为Baargin的NextFlow(Di Tommaso等,2017)的工作流,称为Baargin(Nextflow中的细菌组装和抗菌抗性基因检测)https://github.com/ jhayer/baargin。它可以进行测序读取质量控制,基因组组装和注释,多层次序列键入和质粒鉴定以及抗菌耐药性决定因素检测以及pangenome分析。使用工作流管理系统NextFlow的使用使我们的工作流便携式,灵活并能够进行可再现的分析。