1个生物信息学和结构蛋白质组学,国家癌症研究所。Genova动机工作流程系统是协调对标准化Web服务数据并检索数据的有效选择。已经开发了用于生物信息学的各种工作流管理系统(WMS)。然而,创建工作流程可能很困难,因为它暗示了可用的Web服务和数据格式的知识,而不是提及编程技能。工作流颁布门户。Biowep是生物信息学的工作流颁布门户,已在线向所有研究人员提供[1,2]。它允许进行预定义的工作流以及工作流执行和相关结果的存储和检索。它通过生物信息学任务的本体来支持工作流程的注释。搜索和选择工作流程可以根据其注释进行。BiOwep使用开源:WMS Taverna [3]和MySQL。在这里,我们提出了BiOWEPS WorkFlow存储库管理器(WFRM),这是一个Web应用程序,用于管理工作流存储库中的工作流程。wfrm支持用XSCUFL描述的半自动,有效的插入,更新和注释,这是Mygrid倡议中开发的工作流语言[4,5]。方法WFRM已被实施为BioWep管理的前端。它是通过使用Javaserver页面(JSP)技术编写的,该技术提供了一种快速,简化,与服务器和平台无关的方式来创建动态Web内容。现在,系统维护是简单而直观的。WFRM提供了一个以用户为中心的接口,用于上传用XSCUFL语言编写的工作流程。它包括一个基于MySQL数据库的Java类后端组件,该组件将接口与工作流存储库连接起来。上传的工作流程首先存储在工作目录中,然后通过使用一组基于SAX的类进行句法验证并最终解析。这些返回工作流对客户端应用程序的值,因此在数据库中促进了以应用程序驱动的基本数据的插入,例如工作流量名称,描述和作者。其他信息,例如Workflows应用程序域,必须由用户添加。在我们的DB模式中,我们称之为版本的工作流程及其实现之间有区别。工作流程仅在其目标的基础上在概念上描述,并且没有指任何实际文件。而是将每个版本严格链接到一个文件,可以制定并给出结果。版本可能会有所不同,例如,对于访问的Web服务,提供替代方案,但同等,服务和本地详细处理程序,可以通过保持相同的功能来修改它们。因此,WFRM在上传新工作流程之间有一个区别,在这种情况下,关联的文件将分配给工作流的第一个版本,或者是现有工作流的新版本。提交的文件包括处理器的描述,其链接以及工作流的整体输入和输出。通过生物信息学数据和任务的分类,WFRM在半自动上有效地注释了此信息。我们选择注释总体工作流程和最重要的处理器(将其选择留给用户)。然后将注释插入数据库中,而工作流程本身不会更改。java applet为研究人员提供了探索性工具,用于识别和选择注释应用程序域,详细说明任务以及输入和输出数据类型的最佳定义。可以随时更新(插入,修改或删除)注释。我们对生物信息学任务和数据的分类来自原始的Mygrid本体[6],这些本体已通过使用不同的层次结构进行了重组,并通过添加生物资源和图像数据类型来扩展。在搜索存储库中的工作流程时也使用此注释。结果,我们介绍了WFRM,这是一种用户友好的接口,该界面是用于在BiOWEP WorkFlow存储库中高效且半自动管理信息的工具。之前,在存储库中插入工作流程是一个复杂且耗时的过程,需要手动更新数据库内容。工作流程基本数据已收集,处理器由适当的本体学注释,并且数据库以连贯和有效的方式更新。
作者 本出版物由 EA 实验室委员会根据“机械测量”特设工作组的草案编写。 官方语言 文本可根据需要翻译成其他语言。英语版本为最终版本。 版权 本文的版权归 EA 所有。不得复制文本进行转售。 指导出版物 本文件代表 EA 成员就如何在本文件主题背景下应用认证标准相关条款达成的共识和首选做法。所采取的方法不是强制性的,仅用于指导认证机构及其客户实验室。尽管如此,该文件仍旨在促进 EA 成员机构(特别是参与 EA 多边协议的机构)采取一致的实验室认证方法。更多信息 如需了解有关本出版物的更多信息,您可以联系您所在国家的 EA 成员或 EA 实验室委员会主席,电子邮箱地址:hanspeter.ischi@metas.ch 请访问我们的网站获取最新信息 http://www.european- accreditation.org 类别:4
用于表征飞机机身撞击损伤的光学工具 N.Fournier 1 – F. Santos 1 - C.Brousset 2 – JLArnaud 2 – JAQuiroga 3 1 NDT 专家,2 AIRBUS France,3 Universidad Cmplutense de Madrid 摘要:在飞机制造/组装过程中或交付后的使用中,机身外部可能会出现表面损伤。大多数此类缺陷与飞机尺寸相比都很小,通常分布在机身的整个表面。为了正确表征这类异常,无损检测领域一直需要新手段。它们需要可靠、便携、快速和准确。对于此类缺陷,光学技术通常可以提供好的解决方案。然后,开发了基于光学的新技术来满足飞机制造商对损伤表征的要求。具体来说,我们开发了一种基于阴影莫尔效应的便携式设备,用于表征飞机机身撞击损伤的精确几何形状。该系统易于使用、便携、快速且成本低廉。它将有助于操作员对缺陷进行分类,并在检查过程中节省大量时间。经过一段时间的测试后,该设备应在飞机的总装线上使用。1 – 简介:在航空领域,国家和国际机构都要求制造商、航空公司和维修机构严格遵守有关飞机安全和保障的现行规定。飞机的结构在使用过程中承受着巨大的机械负荷,每个部件都有确定的使用寿命。必须定期检查零件以检查其可用性,并在其整个使用寿命期间安排系统的无损检测。当发生损坏时,必须对面板进行额外的控制,以确保其完整性以便继续使用。结构复杂性的增加以及为提高机械性能和减轻结构重量而使用的新材料导致了新的控制手段的不断发展。这些工具必须与旧工具一样高效,更快、更准确、更自动化,并且对人为解释的限制性更强。这种演变是航空业所有参与者遵循的整体质量战略的一部分。在所有可能影响结构完整性的损坏中,意外表面凹痕是最受监控的损坏之一:必须控制受影响的区域,以确保不会产生裂纹、分层或剥离。在进行任何更深的无损检测控制之前,操作员必须评估表面和深度损坏的严重性。制造商的设计办公室会给出公差,以根据这些标准将损坏分类,从而确定后续操作。然后,控制员必须恢复凹痕的精确几何形状,主要有两个原因:帮助他们对损坏进行分类,并帮助设计办公室确定受影响结构的新机械属性(当凹痕几何形状足够关键以运行此类程序时)。2 - 凹痕表征工具:Moireview©:开发了一种新工具来满足凹痕表征方面的需求。该系统基于光学,可以检索受影响区域的 3D 形状。它的开发是对目前使用的机械手段(深度计、粗糙度仪……)的补充。此工具的基本规格是快速、自主、便携和易于使用。负责检查的操作员必须在飞机周围走动以检测损坏情况,并可能从地面、平台或发动机舱进行测量。此后,他们应该能够携带该工具进入难以接近的区域。考虑到飞机的整个表面,与相对较小的凹痕(可能有很多且遍布整个飞机)相比,系统必须快速,以便在合理的时间内完成完整的检查。最后,考虑到设计办公室给出的公差,该工具必须足够精确。
通用动力公司沃斯堡分部 (GD/FW) 目前正在俄亥俄州赖特-帕特森空军基地的 F-16 系统项目办公室 (SPO) 的指导下开发 F-16 仓库级自动测试设备 (ATE) 系统。现有的设计测试器正在通过更新和改进修改得到广泛利用,绝大多数开发工作集中在测试包(接口测试适配器 (ITAS) 和测试程序)上。本文介绍了所使用的采购管理技术以及迄今为止选择的各种 ATE 和软件开发辅助工具。描述了测试包开发工作。介绍了我们支持 EPROM/PROM IC 的方法。讨论了配置管理。最后,展望了该计划的未来。
1 显示了可用于 ATR 应用的各种传感器类型、武器平台类型、目标类型和先验信息。电磁波谱中能量的大气吸收决定了效用,并指导了常用于 ATR 应用的可见光、前视红外 (FLIR)、激光雷达、微波/毫米波雷达和声学传感器的开发。表 2 显示了这些传感器用于目标识别的工作原理和性能特征。术语 ATR 包括自主识别和辅助识别(或“人员在环”的提示)。在提示中,获取由瞄准系统完成,但最终识别由人完成。尽管许多研究人员希望自主执行各种各样的任务,但服务只会勉强自动化关键的操作员功能。人们天生就偏向于人类操作员的灵活性(例如,尽管拥有出色的陆基和海基战略导弹,但空军仍然依赖有人驾驶的战略核轰炸机)。人们更愿意将操作员从人类生存能力较低的任务中移除。士兵可能会远离“行动”,但预计不会放弃控制权。有“人在回路中”的辅助系统将优先于自主系统。现在已经确定,ATR 是一个多学科领域,需要在传感器、处理算法、架构、实施和软件和硬件系统评估方面拥有多样化的技术和专业知识。相关的计算机视觉和模式识别技术和系统已经从使用统计模式识别方法发展到基于模型的视觉,再到基于知识的系统。最近,实验室也在开发针对部分 ATR 问题的自适应和学习系统。图像理解 (IU) 与计算机视觉同义。IU 的重要目标之一是开发技术
各个系统组件之间的数据通信,即控制单元、发射器和天线开关之间的数据通信在两条数据总线上进行。控制单元充当串行总线 (RS-485) 上的主机,该总线具有极高的抗射频干扰能力。发射器作为从属设备响应控制单元的周期性轮询。轮询的状态数据不仅包含切换(发射器故障)所需的标准,还包含警告、本地和远程控制状态信息、诸如“RF 压力”之类的消息。