这项研究分析了模糊逻辑控制器(FLC)类型-2用于自动车辆方向盘控制的应用,使用误差形式的输入值和从主控制器产生的输出与从脉冲机构计算获得的转向角度值之间的差异的输入值。然后通过ROS(机器人操作系统)处理此数据。本研究将FLC -2类型的性能与7个成员和5个成员以及在各种情况下的PID控制器进行了比较。结果表明,具有7个成员的FLC -2平均误差为4.97%,比5个误差为7.71%的成员的配置要好。在避免障碍测试中,FLC型-2显示出卓越的准确性,人类回避的平均误差为1.54%,一辆停车车的4.28%,左侧两辆停车车的平均误差为1.2%,左侧两辆停车车为2.13%,左侧为1.2%。与PID控制器进行了比较,PID控制器记录了分别为2.19%,3.49%,1.12%和3.49%的错误。从电气工程部门到工程学院的完整路线测试,FLC型-2型的平均误差为8.87%,而PID的平均误差为12.35%,而PID的FLC型误差为4.52%,FLC型-2型和7.57%。flc型-2具有7个成员的被证明在保持动态驾驶条件下的准确性和性能更有效,尽管PID对较小的误差值的响应更平滑。 这一发现显示了FLC -2型在提高转向准确性和整体自动驾驶汽车性能方面的潜力。被证明在保持动态驾驶条件下的准确性和性能更有效,尽管PID对较小的误差值的响应更平滑。这一发现显示了FLC -2型在提高转向准确性和整体自动驾驶汽车性能方面的潜力。关键字:自动驾驶汽车,FLC型-2,PID控制器,转向角,5个成员,7个成员
该博士职位将集中于研究实现机器人系统的研究,这些机器人系统大多以无监督的方式表征和监测海洋环境。自主系统可以在海洋中进行具有成本效益的广泛数据收集,监视和检查,并为执行持续操作的可能性较少,而对人类运营商的依赖较少。这些属性使自主系统对于执行操作以探索,映射和监视具有挑战性的海洋环境的机器人组织是可取的。但是,在非结构化和苛刻的海洋中,成功的任务需要通过优化的观察平台系统和监督风险控制来提高安全性,智能和操作能力,该操作是在保障项目中解决的(“智能自治系统,用于保护海上的保护操作和基础设施””。该立场对正在进行的项目保障和CARO(“自动机器人操作中心海底”)中的研究补充,这些研究正在开发类似的功能,重点是海底基础架构。具体来说,该职位将解决这些领域的一个或多个:
[2] M. Yamada等人,“对车辆部署的道路表面状况检测技术的研究”,JSAE Review,2003,24(2):183-188。[3] L. Colace等人,“一种近红外的光电方法来检测道路状况”,《工程学的光学和激光》,2013年,51(5):633-636。[4] R. Finkele,“使用76 GHz的极化毫米波传感器在路面上检测冰层”,《电子信》,1997,33(13):1153-1154。
摘要:在下一个未来,我们将在日常生活中包围着许多相对便宜的计算设备,配备了无线通信和感应,并以“ Pervasive Intelligence”的概念为基础,在这些基础上,我们可以从这些基础上设想出我们的未来世界作为所有事物的Internet(Iot/IoE)(Iot/IOE)(Iot/IOE),而消费者/IOT/IOT/IOE IOT/IOE IOE和ioe ioe and Industrial and Industrial Iot and ioe and iotial iot iot iot iot iot。实际上,物联网是具有无限应用潜力的技术范式,它越来越成为能够提高企业竞争力,公共行政部门效率和生活质量的现实。在过去的几年中,已经开发了许多IOT启发的系统,并且应用领域已经扩展和深刻发展:智能家居,智能建筑,智能计量,智能工厂,智能汽车,智能汽车,智能环境,智能农业,智能农业,智能农业,智能物流,智能物流,生命环保,智慧零售和智能健康。物联网无线传感器节点的关键所需特征之一是它可以自主从能量收集(EH)进行自主操作的能力,而不是依靠寿命有限的笨重电池。此外,对于许多上述场景,可以预见可穿戴的解决方案,以进一步增加物联网范式的普遍扩散,从而使许多设备和个人相互连接。成功开发成功的RF自主系统(可能可穿戴)的关键字如下:
Miguel Realpe,Boris X. Vintimilla和Ljubo Vlacic。(2015)。传感器故障检测和自动驾驶汽车的诊断。在第二届国际机电一体化,自动化和制造业会议上(ICMAM 2015),国际会议,新加坡,2015年(第1卷30,pp。1-6)。EDP科学。
抽象的地球物理观察将提供有关行星和卫星内部结构的关键信息,并理解内部结构是这些物体的批量组成和热演化的强大结合。因此,地理观测是发现月球起源和演变的关键。在本文中,我们提出了一个自主月球地球物理实验包的开发,该实验包由一套仪器和带有标准化界面的中央站组成,可以安装在各种未来的月球任务上。通过修复仪器与中央站之间的接口,可以轻松地为不同的任务配置适当的实验包。我们在这里描述了一系列可能作为地球物理包装的地球物理仪器:地震计,磁力计,热流探针和激光反射器。这些仪器将提供与内部结构密切相关的月球的机械,热和大地测量参数。我们讨论了未来对月球的地球物理观察所需的功能,其中包括中央站的开发,而中央站通常会通过不同的有效载荷使用。
Emanuele Penocchio,1.6, *艾哈迈德·巴希尔(Ahmad Bachir),2.6 Alberto Credi,3.4 Raymond Dean Astamian,2.5, *和Giulio Ragazzon 2.7, * 1 * 1, * 1, * 1, * 1, * 1, * 1,埃文斯顿西北大学,60208,60208,USA 2 CNRS,8 All'E Gaspard Monge,67000 Strasbourg,法国3氏族中心激活的纳米结构,有机合成与骨质阶级研究所,国家研究委员会,通过Gobetti 101,40129 Boologna,意大利意大利意大利40129工业化学局40129' 40136意大利博洛尼亚5物理与天文学系,缅因州奥罗诺大学,ME 04469,使用6这些作者的贡献Equilly 7 Lead Contact *通信 *通信:Emanuele.penocchio@northwestern.edu(E.P.),astumian@maine.edu(R.D.A. ),girls@unist.fr(g.r。) https://doi.org/10.1016/j.chempr.2024.07.038),girls@unist.fr(g.r。)https://doi.org/10.1016/j.chempr.2024.07.038
摘要:在下一个未来,我们将在日常生活中包围着许多相对便宜的计算设备,配备了无线通信和感应,并以“ Pervasive Intelligence”的概念为基础,在这些基础上,我们可以从这些基础上设想出我们的未来世界作为所有事物的Internet(Iot/IoE)(Iot/IOE)(Iot/IOE),而消费者/IOT/IOT/IOE IOT/IOE IOE和ioe ioe and Industrial and Industrial Iot and ioe and iotial iot iot iot iot iot。实际上,物联网是具有无限应用潜力的技术范式,它越来越成为能够提高企业竞争力,公共行政部门效率和生活质量的现实。在过去的几年中,已经开发了许多IOT启发的系统,并且应用领域已经扩展和深刻发展:智能家居,智能建筑,智能计量,智能工厂,智能汽车,智能汽车,智能环境,智能农业,智能农业,智能农业,智能物流,智能物流,生命环保,智慧零售和智能健康。物联网无线传感器节点的关键所需特征之一是它可以自主从能量收集(EH)进行自主操作的能力,而不是依靠寿命有限的笨重电池。此外,对于许多上述场景,可以预见可穿戴的解决方案,以进一步增加物联网范式的普遍扩散,从而使许多设备和个人相互连接。成功开发成功的RF自主系统(可能可穿戴)的关键字如下:
摘要在不久的将来,自动驾驶汽车(AV)可能会与混合型官员中的人类驾驶员同居。这种同居在造成的流行和个人流动性方面以及从道路安全的角度提出了严重的挑战。混合术可能无法满足预期的安全要求,然后自动驾驶汽车可能会垄断该官员。使用多机构增强学习(MARL)算法,研究人员试图针对两种情况设计自动驾驶汽车,本文研究了他们最近的进步。我们专注于解决决策问题的文章,并确定四个范式。有些作者解决了或者没有社会可行的AV的混合问题问题,而另一些作者则解决了完全自治的案例。虽然后一种情况本质上是一个交流问题,但大多数解决混合处理的作者承认了一些局限性。文献中发现的当前人类驾驶员模型过于简单,因为它们不涵盖驾驶员行为的异质性。因此,他们无法概括各种可能的行为。对于所研究的每篇论文,我们分析了作者如何从观察,行动和奖励方面提出MARL问题以匹配它们所应用的范例。
摘要:这项工作解决了补偿自我组织和自然选择的熵成本的动力学要求,从而揭示了生物学的基本原则。生命的代谢和进化特征因此不能与生命的起源分开。生长,自组织,进化和耗散过程需要由从环境中收获的低透镜能量来代谢耦合和助力。进化过程需要一个涉及平衡外中间体和动力学障碍的繁殖周期,以防止生殖循环反向进行。模型分析导致了出乎意料的简单关系,即应赋予系统的能量,其潜力超过了与生成时间与过渡状态寿命比率相关的值,从而实现了模拟自然选择的过程。重现生活的主要特征,尤其是其达尔文人的行为,需要满足与时间和能量有关的满足约束。不可逆的反应周期仅由不稳定的实体制成,重现了其中一些基本特征,从而为可能出现的自主权提供了物理/化学基础。发现这种新兴的自主系统(EASS)能够通过传播稳定的动力学状态来维持和再现它们的物理/化学基础,从而为表观遗传过程提供物理/化学基础。