描述遗传性听力损失可以归类为综合征或非综合症。综合征听力损失是指与其他医学或身体发现相关的听力损失,包括外耳的可见异常。由于综合征的听力损失是作为多种临床表现综合征的一部分而发生的,因此通常更容易被认为是遗传性的。非综合性听力损失定义为与其他身体体征或症状无关的听力损失。非全面听力损失占遗传确定的聋哑的70%至80%,更难确定病因是遗传性或获得的。该政策主要集中于使用基因检测来确定可疑的遗传性听力损失的原因。可以根据相关的临床发现来诊断综合征听力损失。但是,在听力损失表现时,相关的临床发现可能并不明显。此外,某些遗传基因座的变体可能会导致综合征和非综合性听力损失。鉴于这种重叠,该政策更加集中于遗传性听力损失的基因检测。如果对特定的听力损失病因没有高度怀疑,则理想情况下应以逐步进行评估。在GJB2基因中,常染色体隐性遗传性听力损失的患者中,其他50%的常染色体隐性遗传性听力丧失患者中具有致病性变异;与许多其他基因有关。请参考:没有单一可识别的基因负责大多数常染色体显性遗传性听力损失。如果怀疑常染色体隐性先天性听力损失,则从测试GJB2和GJB6的测试开始是合理的,如果测试为阴性,则筛选与多基因面板听力损失相关的其他基因将是有效的。可疑的常染色体隐性或常染色体显性听力损失的替代策略是获得包括GJB2和GJB6在内的多基因面板作为第一步。鉴于听力损失的遗传原因极端异质性,这两种策略可能被认为是合理等效的。相关政策本政策文件提供了用于遗传性听力损失的基因测试的覆盖标准。
D80 Immunodeficiency with predominantly antibody defects D80.0* Hereditary hypogammaglobulinemia Autosomal recessive agammaglobulinemia (Swiss type) X-linked agammaglobulinemia [Bruton] (with growth hormone deficiency) D80.1 Nonfamilial hypogammaglobulinemia Agammaglobulinemia含有免疫球蛋白的B-淋巴细胞常见可变的agammagaglobulinemia [cvagamma] hardogammagagamaglobulinemia nos d80.2*免疫球蛋白A [IgA] D80.3*的选择性缺陷d80.3*选择性缺陷型免疫缺陷效率。免疫球蛋白M [IgM] D80.5*免疫缺陷率提高免疫球蛋白M [IgM] D80.6*抗体缺乏效率近期免疫球蛋白或与临时抗肿瘤的临时抗肿瘤d880.8其他免疫原性D880.8缺陷Kappa轻链缺乏D80.9免疫缺陷,主要是抗体缺陷,未指定的
数据库检索策略 PubMed ("多囊肾病"[mesh] 或 "多囊肾,常染色体显性"[mesh] 或 (("常染色体显性" 或常染色体显性) AND 多囊肾病*) 或 ADPKD 或 "多囊肝病" [补充概念] 或 (("常染色体显性" 或常染色体显性) AND 多囊肝病*) 或 ADPLD) 不 ("地址"[pt] 或 "自传"[pt] 或 "参考书目"[pt] 或 "传记"[pt] 或 "病例报告"[pt] 或 "评论"[pt] 或 "会议"[pt] 或 "词典"[pt] 或 "目录"[pt] 或 "纪念论文集"[pt] 或 "政府出版物"[pt] 或 "历史文章"[pt] 或 "访谈"[pt] 或 "讲座"[pt] 或“法律案件”[pt] 或 “立法”[pt] 或 “新闻”[pt] 或 “报纸文章”[pt] 或 “患者教育讲义”[pt] 或 “期刊索引”[pt] 或 “评论”[ti] 或 “社论” [出版物类型] 或 “ephemera”[pt] 或 “体外技术”[mh] 或 “介绍性期刊文章”[pt] 或 (“动物”[Mesh] 不是 “人类”[Mesh]) 或 大鼠[tw] 或 大鼠[tw] 或 牛[tw] 或 牛[tw] 或 鸡*[tw] 或 马[tw] 或 马[tw] 或 小鼠[tw] 或 小鼠[tw] 或 牛[tw] 或 绵羊[tw] 或 绵羊[tw] 或 鼠科动物[tw] 或 猫[tw] 或 猫[tw] 或 狗[tw] 或 狗[tw] 或 啮齿动物[tw]) Embase #1 'autosomal-dominant polycystic kidney disease' #2 'autosomal-dominant polycystic liver disease' #3 adpkd #4 adpld #5 OR/#1-4 #6 #5 AND ([article]/lim OR [article in press]/lim OR [conference abstract]/lim OR [letter]/lim) AND [humans]/lim Cochrane CENTRAL #1 MeSH 描述符:[Polycystic Kidney Diseases] 分解所有树 #2 (("autosomal modest" OR autosomal-dominant) AND polycystic AND (kidney OR liver) AND disease*) #3 ADPKD #4 ADPLD #5 OR #2 OR #3 OR #4
镰状细胞性贫血是一种常染色体隐性遗传病,会降低红细胞携带氧气的能力。这种疾病通常被认为是有害的;然而,具有这种特性的杂合子个体可能不太容易患上传染病疟疾。
对年龄相关的黄斑变性(AMD)的诊断可能会对患者的生活产生重大影响。因此,考虑差异诊断是很重要的,因为这些诊断在预后,遗传,监测和治疗方面可能与AMD有很大差异。与drusen,类似drusen的变化,单基因视网膜营养不良以及许多其他罕见的黄斑疾病的AMD诊断有关其他黄斑疾病的差异诊断。在这篇综述中,提出了临床示例,以说明对AMD的替代诊断,以及何时应考虑这些诊断。These include, amongst others, patients with autosomal dominant drusen, Sorsby fundus dystrophy, pachydrusen, late-onset Stargardt disease, extensive macular atrophy with pseudodrusen (EMAP), pseudoxanthoma elasticum (PXE), North Carolina macular dystrophy, mitochondrial retinopathy, benign yellow dot黄斑病,圆顶或山脊形的斑块或黄斑telangiectasia类型2。
常染色体隐性遗传:这些疾病会在每个父母继承突变基因的两个副本时就会发生。如果父母双方都是隐性基因突变的载体,他们的孩子有25%的机会继承了疾病,50%的机会成为载体,有25%的机会继承两个正常基因。囊性纤维化,镰状细胞贫血和Tay-Sachs病是常染色体隐性疾病的例子。x连接的遗传:这些疾病是由X染色体上的突变引起的。由于雄性只有一个X染色体,因此该染色体上基因的单个缺陷副本会导致该疾病。在女性中,有两个X染色体,必须存在于两个X染色体上的缺陷基因才能表现出来,尽管如果它们只有一个有缺陷的基因,则可以是载体。血友病和Duchenne肌肉营养不良是X连锁疾病的经典例子[7,8]。
1。Harris PC,Torres ve。 多囊性肾脏疾病,常染色体显性症。 2002年1月10日[更新2022年9月29日]。 in:Adam MP,Ardinger HH,Pagon RA等,编辑。 GenereViews [Internet]。 西雅图(WA):西雅图华盛顿大学; 1993-2023。 可从:https://www.ncbi.nlm.nih.gov/books/nbk1246/ 2。 Sweeney We,Avner Ed。 多囊性肾脏疾病,常染色体隐性。 2001年7月19日[2019年2月14日更新]。 in:Adam MP,Ardinger HH,Pagon RA等,编辑。 GenereViews [Internet]。 西雅图(WA):西雅图华盛顿大学; 1993-2023。 可从:https://www.ncbi.nlm.nih.gov/books/nbk1326/ 3。 Hays T,Groopman EE,Gharavi AG。 对未知病因的肾脏疾病的基因检测。 肾脏Int。 2020; 98(3):590-600。 doi:10.1016/j.kint.2020.03.031Harris PC,Torres ve。多囊性肾脏疾病,常染色体显性症。2002年1月10日[更新2022年9月29日]。in:Adam MP,Ardinger HH,Pagon RA等,编辑。GenereViews [Internet]。西雅图(WA):西雅图华盛顿大学; 1993-2023。 可从:https://www.ncbi.nlm.nih.gov/books/nbk1246/ 2。 Sweeney We,Avner Ed。 多囊性肾脏疾病,常染色体隐性。 2001年7月19日[2019年2月14日更新]。 in:Adam MP,Ardinger HH,Pagon RA等,编辑。 GenereViews [Internet]。 西雅图(WA):西雅图华盛顿大学; 1993-2023。 可从:https://www.ncbi.nlm.nih.gov/books/nbk1326/ 3。 Hays T,Groopman EE,Gharavi AG。 对未知病因的肾脏疾病的基因检测。 肾脏Int。 2020; 98(3):590-600。 doi:10.1016/j.kint.2020.03.031西雅图(WA):西雅图华盛顿大学; 1993-2023。可从:https://www.ncbi.nlm.nih.gov/books/nbk1246/ 2。Sweeney We,Avner Ed。多囊性肾脏疾病,常染色体隐性。2001年7月19日[2019年2月14日更新]。 in:Adam MP,Ardinger HH,Pagon RA等,编辑。 GenereViews [Internet]。 西雅图(WA):西雅图华盛顿大学; 1993-2023。 可从:https://www.ncbi.nlm.nih.gov/books/nbk1326/ 3。 Hays T,Groopman EE,Gharavi AG。 对未知病因的肾脏疾病的基因检测。 肾脏Int。 2020; 98(3):590-600。 doi:10.1016/j.kint.2020.03.0312001年7月19日[2019年2月14日更新]。in:Adam MP,Ardinger HH,Pagon RA等,编辑。GenereViews [Internet]。西雅图(WA):西雅图华盛顿大学; 1993-2023。 可从:https://www.ncbi.nlm.nih.gov/books/nbk1326/ 3。 Hays T,Groopman EE,Gharavi AG。 对未知病因的肾脏疾病的基因检测。 肾脏Int。 2020; 98(3):590-600。 doi:10.1016/j.kint.2020.03.031西雅图(WA):西雅图华盛顿大学; 1993-2023。可从:https://www.ncbi.nlm.nih.gov/books/nbk1326/ 3。Hays T,Groopman EE,Gharavi AG。对未知病因的肾脏疾病的基因检测。肾脏Int。 2020; 98(3):590-600。 doi:10.1016/j.kint.2020.03.031肾脏Int。2020; 98(3):590-600。 doi:10.1016/j.kint.2020.03.031
摘要和证据分析:阿尔茨海默氏病(AD):患有轻度认知障碍或与AD相关的轻度认知障碍或轻度痴呆症患者,他们正在考虑开始或停用FDA批准的淀粉样蛋白β-beta靶向治疗,这些靶向治疗接受基因测试,接受基因测试,包括随机临床试验包括随机临床试验。与杂合子和非携带者相比,用淀粉样蛋白-beta靶向疗法的治疗后,无症状,有症状和严重的淀粉样蛋白相关成像异常(ARIA)的发生率明显更高。FDA标签中的盒装警告针对已批准的淀粉样蛋白β靶向疗法指出,应在开始治疗之前对APOEε4状态进行测试,以告知开发ARIA的风险。证据足以确定该技术会改善净健康结果。无症状的患者,患有基因检测的晚发广告有风险,证据包括对基因关联,测试准确性以及对健康结果的影响的研究。许多基因,包括APOE,CR1,BIN1,PICALM和TREM2,都与后期发作的AD相关。但是,基因检测的灵敏度和特异性指示哪些人会发展为AD,而其他许多因素可能影响进展。总体而言,尚未证明基因检测可以增加临床上AD诊断的价值。目前缺乏防止AD发作的有效方法限制了基因检测的临床益处。无症状患者,患有早期发作,常染色体显性AD的风险,并具有已知的家族变体,他们接受了有针对性的基因检测,证据包括对基因关联和测试准确性的研究。已知PSEN1和PSEN2和APP基因中的变体在常染色体显性模式中引起早发AD,几乎完全渗透。在用于预后或预测的生殖环境之外,没有足够的证据来得出关于病原变异基因测试的益处的结论。无症状患者,患有早期发作,常染色体显性AD的风险,并且没有接受基因检测的已知家族变异,这些证据包括有关基因关联和测试准确性的研究。pSEN1,PSEN2和APP基因中的变体已知会引起常染色体显性型模式的早期发作AD,几乎完整
视网膜色素变性 (RP) 是一组罕见的遗传性退行性眼病,影响着全球多达 150 万人。RP 是由影响视网膜的多个基因突变引起的,导致视力逐渐丧失,最终失明,症状通常在儿童时期显现,目前无法治愈。RP 的特征是双侧视杆感光细胞丧失,随后视锥感光细胞继发丧失,视网膜色素上皮 (RPE) 变性。RHO 介导的常染色体显性 RP 是由编码视紫红质的基因突变引起的,视紫红质是一种光敏 G 蛋白偶联受体,可启动视杆感光细胞中的光转导级联 (Zhen 等人,2023 年)。USH2A 基因突变是常染色体隐性 RP 和 Usher 综合征的主要原因。 USH2A 编码 usherin,这是一种跨膜蛋白,主要在视网膜的感光层、耳蜗的毛细胞和许多组织的基底膜中产生(Li et al. 2022)。