此次探险队配备了最先进的萨博剑齿虎自主水下航行器 (AUV),这种航行器能够部署到 3,000 米深的水下,并装有一系列传感器,以便定位、成像、拍摄和扫描“坚忍号”沉船。探险队科学团队汇集了海冰科学家、海洋学家、气象学家和海洋工程师,以研究南极海冰,进一步了解周围威德尔海和南大洋的环境变化,同时还提供帮助寻找“坚忍号”沉船和加深对船冰相互作用的理解的运行数据。此外,从这些科学研究中收集的数据将有助于改进未来的海冰导航系统。本报告总结了开展的科学研究,展示了初步结果,并列出了创建的数据集及其访问方法。开发新的海冰信息系统 Endurance22 是当今在海冰中航行和有效工作的作战能力的案例研究,并为下一代冰信息系统定义了基准。今天,创建海冰图表仍然是一项非常繁琐且耗时的工作。特别是在南极洲,几乎没有海冰信息来支持航运作业,因为没有专门的国家冰服务机构负责(尽管挪威和美国冰服务机构每周提供冰
保证案例用于交流和评估对关键系统属性(例如安全和保障)的信心。从历史上看,保证案件是手动创建的,由系统利益相关者通过漫长而复杂的过程对其进行评估。近年来,基于模型的系统保证方法已获得流行,以提高系统保证活动的效率和质量。这变得越来越重要,随着系统变得越来越复杂,管理其发展生命周期的挑战,包括开发,验证和验证活动的协调,以及相互联系的系统保证工件中的变化影响分析。此外,由于机器人和自主系统(RAS)被采用到社会中,因此需要保证案件来支持该系统运营生活期间的演变,以在面对不确定的环境的情况下进行持续的保证。在本文中,我们有助于访问 - 安全 - 关键系统的以保证案例为中心的工程,一种工程方法以及其工具支持,以开发围绕不断发展的基于模型的保证案例的安全 - 关键系统的开发。我们展示了基于模型的系统保证案例如何追踪到异质工程工件(例如系统建筑模型,系统安全分析,系统行为模型等。),以及如何在开发过程中整合形式的方法。我们证明了如何在开发和运行时自动评估保证案例。我们将方法应用于基于自动水下车辆(AUV)的案例研究。
项目名称:自治移动代理商(机器人)的开发部门:电气和计算机工程,计算机和信息科学与工程,机械和航空工程师教师:Eric Schwartz,ems@ufl.edu博士学生导师:不可用:秋季,春季,夏季学生级别:新生,大二,大三,高年级;每学期15-50名学生:与他人学习和合作的愿望。信用:0-3通过EGN4912(通常在第一学期的0个学分)津贴:除非选择大学学者或新兴学者的申请要求,否则没有任何津贴:教师访谈;通过ems@ufl.edu将电子邮件发送给Schwartz博士,以设置约会申请截止日期:ASAP网站:https://mil.ufl.edu/项目描述:MIL提供跨学科的协同环境,用于研究和开发智能,自主机器人。我们对涵盖机器学习,实时传感器集成(包括计算机视觉,LADAR,SONAR,RADAR,IMU等)的自主移动代理的理论和实现进行研究。),优化和控制。MIL研究的应用(产生了功能性机器人)包括自动水下车辆(AUV),自主水面车辆(ASV),自动陆地车辆(ALV)和自动驾驶汽车(AAVS)。MIL定期参加国际机器人比赛(并以前赢得了五项世界冠军)。
保证案例用于交流和评估对关键系统(例如安全和保障)的信心。从历史上看,保证案件是手动创建的,由系统利益相关者通过漫长而复杂的过程对其进行评估。近年来,基于模型的系统保证方法已获得了知名度,以提高系统保证活动的效率和质量。这变得越来越重要,随着系统变得越来越复杂,管理其发展生命周期的挑战,包括开发,验证和验证活动的协调,以及在相互联系的系统保证方面的变化影响分析。此外,由于机器人和自主系统(RAS)被采用到社会中,因此需要保证案件来支持该系统运营生活期间的演变,以在面对不确定的环境的情况下进行持续的保证。在本文中,我们有助于访问 - 保证案例以安全至关重要系统的为中心工程,工程方法以及其工具支持,以开发安全关键系统,围绕不断发展的基于模型的保证案例发展。我们展示了基于模型的系统保证案例如何追踪到异质工程工件(例如系统建筑模型,系统安全分析,系统行为模型等。),以及如何在开发过程中整合形式的方法。我们证明了如何在开发和运行时自动评估保证案例。我们将方法应用于基于自动水下车辆(AUV)的案例研究。
词汇表Actris气溶胶,云和痕量气体研究基础设施ADCP声学多普勒当前的Profiler ADR ADR ADR ADR原子介电谐振ADSB自动依赖性监视广播广播高于地面的地面AI人工智能AMOF AMOF AMSIFIC AMS AMS AMS AMS AMS AIMER IMENTER AIMAN AMS AIMER AIMEN AIN SIMENIT AIRPAIR A AIMENIT AIMENIT AIR AIMITAIN A AR AIR SIMENIT AIR INTIPEAT A AR AIR INTIPEAT Interial Importion a AR A AR A AR Si Yealtian设置带到 Airborne Research Facility ARA Advanced Research Aircraft ARSF Airborne Research & Survey Facility ASCII American Standard Code for Information Interchange ASPA Antarctic Specially Protected Area ASSI Air Safety Support International ASV Autonomous Surface Vehicle ATSC Advanced Training Short Course AUV Autonomous Underwater Vehicle BAS British Antarctic Survey BGS British Geological Survey BVLOS Beyond Visual Line of Sight CAA Civil Aviation Authority CAL/VAL Calibration/Validation CAPS Cloud Aerosol and Precipitation Spectrometer CAST Co-ordinated Airborne Studies in the Tropics CEDA Centre for Environmental Data Analysis CMS Computer Modelling Support COINS Copernicus In Situ COMNAP Council of Managers of National Antarctic Programs CONOPS Concept of Operations COST Cooperation in Science and Technology COTS Commercial Off-The-Shelf CT^2 Temperature Structure Function Coefficient DEM Digital Elevation Model dGPS Differential Global Positioning System DOAS Differential Optical Absorption Spectroscopy DOI Digital对象标识符DP动态定位DSM数字表面模型DTM数字地形模型EA环境环境EC EDDY协方差EDS环境数据服务EGU欧洲地球科学工会
ACIA 北极气候影响评估 AIRSS 北极冰情航运系统 AMSA 北极海运评估 AMSR-E 先进微波扫描辐射计 - 地球观测系统 ASPEN 北极航运概率评估网络 ASPPR 北极航运污染防治条例 AVHRR 先进甚高分辨率辐射计 AUV 自主水下航行器 CCG 加拿大海岸警卫队 CCGA 加拿大海岸警卫队辅助部队 CCGS 加拿大海岸警卫队舰艇 CLIP 当地冰压目录 CReSIS 冰盖遥感中心 CVN 夏比 V 型缺口 DMSP 国防气象卫星计划 ECA 排放控制区 EEZ 专属经济区 ESMR 电扫描微波辐射计 Envisat“环境卫星”是一颗地球观测卫星 EPA 环境保护署 FE 有限元 FD 有限差分 FRP 纤维增强塑料 FY 第一年 G&M 德国和米尔恩 GCM 全球气候模型 GPR 地面穿透雷达 HAZ 热量影响区 HAZID 危险源辨识 HAZOP 危险源与可操作性 IACS 国际船级社协会 IACS UR I 国际船级社协会,统一要求,极地级 ICESat 冰、云与陆地高程卫星 IMD 海洋动力学研究所 IMO 国际海事组织 IPCC 政府间气候变化专门委员会 LNG 液化天然气 MARAD 海事管理局 MARPOL 国际防止船舶污染公约 MCoRDS 多通道相干雷达测深仪 MODIS 中分辨率成像光谱仪 MOTAN 惯性运动测量系统 MPa 兆帕
洛克希德·马丁公司给这个团队下达了以下指令:“ExPO(行星海洋探索)系统(客户)计划在未来探索木卫二的海底海洋。”这是一项 A 阶段研究,旨在评估自主海底任务的可行性。这项研究将模拟团队预计将面临的一些关键电信挑战。这次探索任务将面临光时通信挑战、协调深空资产挑战和水下挑战。目前没有现有的导航辅助设备。唯一可用的资源将是轨道中继卫星,允许在车辆浮出水面时在规定的时间进行定期数据传输。除了在地面站和车辆之间中继上行/下行数据外,该轨道器没有其他功能。“提供早期能力的演示,为未来的木卫二探索任务做准备。本次演示将以地球为基础,并将成为外星飞行器操作概念的技术演示。构建一个探索 AUV(自主水下航行器),以在静止的水体中搜索、识别和报告多个感兴趣的物体。报告水体中已识别物体的相对位置和每个物体的下行图像数据。轨道中继卫星将允许有限的数据传输。本次演示仅允许 3 个上行/下行窗口,每个窗口持续时间为 5 分钟。这些窗口将在任务执行开始时、任务执行 20 分钟后和任务执行 40 分钟后出现。您将无法根据当前下行窗口的数据上传数据。从设置、执行到拆卸的任务操作必须在 90 分钟内完成,执行时间为 60 分钟。”解决这个设计问题将增强洛克希德马丁公司对自主水下航行器的知识体系,特别是此类航行器在复杂水下环境中航行的能力。该团队需要以 5000 美元的预算设计和创新这个问题。
i. 地球上的生命 [ 4 个讲座]:原始条件下有机分子的形成、热液喷口的作用;RNA 在第一个自我复制系统假设中的意义;细胞生命的出现;代谢途径的发展;以及产氧光合作用的兴起。 ii. 太空环境中的地球生命 [5 个讲座]:微生物对太空物理极端条件的适应,例如温度、辐射、压力、重力和地球化学极端条件(例如干燥、盐度、 pH 值、氧气耗尽或极端氧化还原电位);模拟地球上的月球和军事环境。 iii. 太空生命的生物特征 [5 个讲座]:生命的定义;寻找我们所知的生命;寻找我们不所知的生命;太空生命的潜在生物特征;分子、同位素和形态生物特征,例如特定的有机分子、同位素比和微化石结构;了解当前检测方法的局限性并讨论潜在发现对我们理解宇宙生命的影响;在光谱数据中识别潜在的生物特征 iv. 生命研究的空间仪器 [5 个讲座]:现场生命检测和监测太空生命的方法;从任务科学到飞行硬件;行星保护和污染控制;样品处理和流体学;热环境和调节;抗辐射;虚拟原型;仪器验证平台(实验室、气球、火箭、立方体卫星、国际空间站、AUV 等)。 v. 印度航天任务中的天体生物学和空间生物学 [2 个讲座]。 Gaganyaan 和载人航天。 Chandrayaan-4、Chandrayaan-5、Bharatiya Antariksha 站、金星和火星任务(检测生物特征)。 c. 先决条件(如果有):N/A d. 包含在学习课程手册中的简短摘要:
本报告介绍了美国海军濒海作战潜艇 (SSLW) 的概念探索与开发。该概念设计是在弗吉尼亚理工大学为期两个学期的船舶设计课程中完成的。SSLW 要求基于对能够进入濒海地区的技术先进、隐蔽且小型的潜艇的需求。任务要求包括特种部队的运送、撤离和支援、布雷和对抗措施、防御性反潜战、搜索和打捞以及 AUV 支援。潜艇需要具有多个灵活的任务包。在进行了大量技术研究和定义后,使用多目标遗传优化 (MOGO) 完成概念探索权衡研究和设计空间探索。此优化的客观属性是成本、风险(技术、成本、进度和性能)和军事效能。此优化的产物是一系列成本-风险-效能边界,用于根据客户对成本、风险和效能的偏好选择替代设计并定义作战要求 (ORD1)。 SSLW ATLAS 是一种来自非主导前沿的高风险、双层替代方案。选择该设计是为了提供一个具有挑战性的设计项目。由于成本在要求之内,它是一艘高效的潜艇。SSLW ATLAS 的特点如下。ATLAS 具有轴对称船体形状。其高度自动化使海军人员免受危险并降低了成本。小尺寸使其成为一种多功能设计,能够进入以前无法进入的区域。三个有效载荷接口模块使 ATLAS 具有高度可升级性并能够执行许多不同的任务。它适用于秘密行动,但如果有必要,它仍然可以用 8 枚 Mark 50 鱼雷自卫。概念开发包括船体形状开发、结构有限元分析、推进和电力系统开发和布置、总体布置、机械布置、战斗系统定义和布置、平衡多边形分析、成本和可生产性分析以及风险分析。最终的概念设计在成本和风险约束内满足 ORD 中的关键操作要求,还需要额外的工作来评估波浪中的浅水运动;评估机动和控制;更好地定义和评估有效载荷包和母舰的操作;重新评估电池电量特性;更好地改进耐压壳外部的结构。
本报告介绍了美国海军濒海作战潜艇 (SSLW) 的概念探索和开发。该概念设计是在弗吉尼亚理工大学为期两个学期的船舶设计课程中完成的。SSLW 要求基于对能够进入濒海地区的技术先进、隐蔽且小型的潜艇的需求。任务要求包括特种部队的运送、提取和支援、布雷和对抗措施、防御性反潜战、搜索和打捞以及 AUV 支援。潜艇需要具有多个灵活的任务包。在进行大量技术研究和定义后,使用多目标遗传优化 (MOGO) 完成概念探索权衡研究和设计空间探索。此优化的客观属性是成本、风险(技术、成本、进度和性能)和军事效能。优化的结果是一系列成本风险效益边界,用于根据客户对成本、风险和效益的偏好选择替代设计并定义作战需求 (ORD1)。SSLW ATLAS 是一种高风险、双层甲板的替代方案,与非主导边界不同。选择该设计是为了提供一个具有挑战性的设计项目。成本完全符合要求,是一艘高效的潜艇。SSLW ATLAS 的特点如下。ATLAS 具有轴对称船体形状。其高度自动化使海军人员远离危险并降低了成本。小尺寸使其成为一种多功能设计,能够进入以前无法进入的区域。三个有效载荷接口模块使 ATLAS 具有高度可升级性,能够执行许多不同的任务。它适用于秘密行动,必要时仍能用 8 枚 Mark 50 鱼雷自卫。概念开发包括船体形式开发、结构有限元分析、推进和电力系统开发和布置、总体布置、机械布置、战斗系统定义和布置、平衡多边形分析、成本和可生产性分析以及风险分析。最终概念设计在成本和风险约束内满足 ORD 中的关键操作要求,还需要进行额外工作来评估波浪中的浅水运动;评估机动和控制;更好地定义和评估有效载荷包和母舰的操作;重新评估电池功率特性;并更好地改进耐压船体外部的结构。
