铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。
优异的性能和大规模制造的潜力为碳化硅衬底上外延石墨烯的电子应用开辟了广阔的领域。然而,在不使用静电栅极的情况下,可靠的掺杂方法可以永久控制载流子浓度并将其调整到所需值,这具有挑战性,并且仍在研究中。在本研究中,研究了一种后生长分子掺杂技术,该技术通过使用受体 F4-TCNQ 来补偿原始外延石墨烯的高电子密度。通过精确调节掺杂剂浓度,载流子密度可以在从本征 n 型到 p 型的宽范围内进行调整。制造的量子霍尔器件可以直接使用,无需进一步处理。不同掺杂水平的石墨烯基器件的高精度电阻测量显示量化精度为 10 − 9,这强调了所制造器件的高质量以及该方法对器件应用的适用性。实验观察到的载流子密度与量子霍尔平台开始之间的相关性为量子电阻计量中的器件选择提供了可靠的标准。
爆炸的粉末定向能量沉积经过精心设计,用于精细分辨率添加剂制造处理。同轴粉末沉积头使用由外喷嘴指向的屏蔽气体的外层,以防止在粉末熔化过程中发生氧化。粉末爆炸的原料集水效率可能低至50-80%,而电线沉积系统的效率更接近98%。本研究评估了定向能量沉积喷嘴条件对集水效率的影响。通过粉末流的收敛性,已经发现总体外部屏蔽气喷嘴长度的变化可将材料使用效率提高10%。该实验的结果表明,对于同轴粉末沉积头设计,如果可以安全地降低僵持距离,则随着外部屏蔽气喷嘴的长度增加或隔离距离降低,可以提高粉末流域效率。
1. Aziz A、El-Mowafy O、Paredes S。使用 CAD/CAM 技术制作的锂二硅酸盐玻璃陶瓷冠的临床结果:系统评价。Dent Med Probl。2020;57(2):197-206。2. Marchesi G、Camurri Piloni A、Nicolin V、Turco G、di Lenarda R。椅旁 CAD/CAM 材料:临床应用的当前趋势。生物学。2021;10(11):1170。3. Stawarczyk B、Özcan M、Trottmann A、Schmutz F、Roos M、Hämmerle C。CAD/CAM 树脂块及其牙釉质拮抗剂的双体磨损率。J Prosthet Dent。2013;109(5):325-332。 4. Arif R、Yilmaz B、Johnston WM。用于层压贴面和全冠的 CAD-CAM 修复材料的体外颜色染色性和相对半透明度。J Prosthet Dent。2019;122(2):160-166。5. Corado HPR、da Silveira P、Ortega VL 等人。用于 CAD/CAM 的基于锂二硅酸盐和氧化锆增强锂硅酸盐的玻璃陶瓷的抗弯强度。Int J Biomater。2022;2022:1-9。6. Chen Y、Yeung AWK、Pow EHN、Tsoi JKH。锂二硅酸盐在牙科中的现状和研究趋势:文献计量分析。J Prosthet Dent。2021;126(4):512-522。 7. Abad-Coronel C、Ordoñez Balladares A、Fajardo JI、Martín Biedma BJ。使用 CAD/CAM 系统制造并使用不同热单元和程序结晶的锂二硅酸盐长石修复体的抗断裂性。材料。2021;14(12):3215。8. Lubauer J、Belli R、Peterlik H、Hurle K、Lohbauer U。把握锂的炒作:洞察现代牙科锂硅酸盐玻璃陶瓷。Dent Mater。2021;38:318-332。9. Gürdal I、Atay A、Eichberger M、Cal E、Üsümez A、Stawarczyk B。热循环后 CAD-CAM 材料和复合树脂水泥的颜色变化。J Prosthet Dent。 2018;120(4):546-552。10. Phark JH、Duarte S Jr。新型锂二硅酸盐玻璃陶瓷的微观结构考虑因素:综述。牙科美学修复杂志。2022;34(1):92-103。11. Stawarczyk B、Mandl A、Liebermann A。现代 CAD/CAM 硅酸盐陶瓷及其半透明度以及水热老化对半透明度、马氏硬度、双轴抗弯强度和可靠性的影响。机械行为生物医学材料杂志。2021;118:104-456。12. Gunal B、Ulusoy MM。不同厚度的当代单片 CAD-CAM 修复材料的光学特性。牙科美学修复杂志。2018;30(5):434-441。 13. Sen N、Us YO。整体式 CAD-CAM 修复材料的机械和光学性能。J Prosthet Dent。2018;119(4):593-599。14. Kurt M、Banko glu Güngör M、Karakoca Nemli S、Turhan BB。上釉方法对硅酸盐陶瓷光学和表面性能的影响。J Prosthodont Res。2020;64(2):202-209。15. Donmez MB、Olcay EO、Demirel M。纳米锂二硅酸盐陶瓷在不同老化过程后的抗负载失效性能和光学特性。材料。2022;15(11):4011。 16. Subas¸ ı MG、Alp G、Johnston WM、Yilmaz B. 厚度对单片 CAD-CAM 陶瓷光学特性的影响。J Dent。2018;71:38-42。17. Çakmak G、Donmez MB、Kashkari A、Johnston WM、Yilmaz B。厚度、水泥色度和咖啡热循环对氧化锆增强锂硅酸盐陶瓷光学性能的影响。J Esthet Restor Dent。2021;33(8):1132-1138。18. Zarone F、Ruggiero G、Leone R、Breschi L、Leuci S、Sorrentino R。氧化锆增强锂硅酸盐 (ZLS) 的机械和生物学性能:文献综述。J Dent。2021;109:103661。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,这使得在较小的电荷载流子密度下可以有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上具有发展前景的可扩展外延石墨烯需要分子掺杂,而分子掺杂在环境条件下通常是不稳定的,以补偿来自 SiC 衬底的电子转移。在这里,我们采用了有机电子器件中常见的经典玻璃封装,以使分子掺杂的外延石墨烯对空气中的水和氧分子钝化。我们已经研究了玻璃封装设备中霍尔量子化的稳定性近 1 年。经过近一年的多次热循环,霍尔量子化保持在阈值磁场之上,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通未封装的器件在空气中放置 1 个月后明显显示出与标称量子化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,这使得在较小的电荷载流子密度下可以有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上具有发展前景的可扩展外延石墨烯需要分子掺杂,而分子掺杂在环境条件下通常是不稳定的,以补偿来自 SiC 衬底的电子转移。在这里,我们采用了有机电子器件中常见的经典玻璃封装,以使分子掺杂的外延石墨烯对空气中的水和氧分子钝化。我们已经研究了玻璃封装设备中霍尔量子化的稳定性近 1 年。经过近一年的多次热循环,霍尔量子化保持在阈值磁场之上,小于 3.5 n Ω Ω − 1 的测量不确定度,而普通未封装的器件在空气中放置 1 个月后明显显示出与标称量子化霍尔电阻的相对偏差大于 0.05%。
achristian.bernauer@iwb.tum.de、bthomas.merk@tum.de、cavelino.zapata@iwb.tum.de、dmichael.zaeh@iwb.tum.de achristian.bernauer@iwb.tum.de、bthomas.merk@tum.de、cavelino.zapata@iwb.tum.de、 dmichael.zaeh@iwb.tum.de achristian.bernauer@iwb.tum.de、bthomas.merk@tum.de、cavelino.zapata@iwb.tum.de、dmichael.zaeh@iwb.tum.de achristian.bernauer@iwb.tum.de、bthomas.merk@tum.de、 Cavelino.zapata@iwb.tum.de, dmichael.zaeh@iwb.tum.de achristian.bernauer@iwb.tum.de、bthomas.merk@tum.de、cavelino.zapata@iwb.tum.de、dmichael.zaeh@iwb.tum.de achristian.bernauer@iwb.tum.de、bthomas.merk@tum.de、 Cavelino.zapata@iwb.tum.de、dmichael.zaeh@iwb.tum.de achristian.bernauer@iwb.tum.de、bthomas.merk@tum.de、cavelino.zapata@iwb.tum.de、dmichael.zaeh@iwb.tum.de achristian.bernauer@iwb.tum.de、 bthomas.merk@tum.de, Cavelino.zapata@iwb.tum.de、dmichael.zaeh@iwb.tum.de achristian.bernauer@iwb.tum.de、bthomas.merk@tum.de、cavelino.zapata@iwb.tum.de、dmichael.zaeh@iwb.tum.de