糖尿病性视网膜病(RD)是糖尿病的严重并发症,可能会损害视网膜并威胁视力。早期发现RD对于防止进一步的眼睛损害非常重要。为了增加这种早期检测,深度学习技术,尤其是CNN方法,已被广泛使用。本研究旨在在视网膜图像分类中实施和比较四种不同CNN体系结构的性能,即Resnet152v2,Xception,Denset201和InceptionV3,以检测RD。首先,将数据集视网膜图像分为感染RD的类别和不感染的类别。然后,使用培训数据开发和培训CNN模型以对图像进行分类。使用数据增强技术有助于增加模型的概括。训练模型后,使用单独的测试数据集进行测试以评估每个模型的性能。测试结果表明,Xception和Denset201在检测RD方面具有出色的性能,精度,精度,召回和F1得分达到96%。该评估的结果证实,深度学习技术,尤其是以CNN的形式,在支持医学诊断方面具有巨大的潜力,尤其是在检测复杂的眼睛(例如RD)方面。这些模型的使用可以为RD患者带来重大好处,从而可以更有效的早期文本和更及时的处理。抽象的糖尿病性视网膜病(DR)是糖尿病的严重并发症,可能会对视网膜造成损害并威胁视力。丹根·德米基安(Div),Penelitian Ini成员Kontribusi penting Dalam Pengembangan solusi otomatis untuk untuk诊断RD,Yang Dapat Mening-Katkan Perawatan kehatan kesehatan kesehatan kesehatan mata secara secara secara secara secara secara secara secara keseluruhan。早期发现RD对于防止进一步的眼睛损害非常重要。为了改善这种早期检测,深度学习技术,尤其是CNN方法已被广泛使用。本研究旨在在视网膜图像分类中实施和比较四种不同CNN体系结构的实现,即Resnet152v2,Xception,Densenet201和IntectionV3。首先,将视网膜图像数据集分为RD感染和非RD感染类别。然后,使用训练数据来开发和培训CNN模型以对图像进行分类。使用数据增强技术有助于改善模型的概括。训练模型后,使用单独的测试数据集进行测试以评估每个模型的性能。测试结果表明,Xception和Densenet201在检测RD方面具有出色的性能,精度,精度,召回和F1得分达到96%。此评估的结果证实,深度学习技术,尤其是以CNN的形式,在支持医学诊断方面具有巨大的潜力,尤其是在检测复杂的眼部疾病(例如RD)方面。使用这些模型可以为RD患者带来重大益处,从而实现更多效率的早期检测和更及时的治疗。因此,这项研究为RD诊断的自动解决方案的开发做出了重要贡献,这可以改善整体眼保健。
抽象预测控制在很大程度上取决于干扰预测的质量。虽然重新干扰建模效果已经采用了概率的观点来防止不可靠的确定性预测,但这种概率模型通常仅适用于数据丰富的设置或涉及对基本分布的简化假设。生成模型,例如条件变异自动编码器(CVAE),为从数据中学习分布提供了一种表达和自动化的方法。通过对学习的潜在空间进行采样,可以产生看不见的干扰实现。在本文中,我们开发了利用这些生成模型的方法来设计经济随机模型预测控制(SMPC),该模型利用CVAE产生的干扰信号进行在线适应。CVAE产生的方案可以转换为对学到的潜在矢量的条件概率,其中条件与影响干扰信号形状本身的因素(例如,工作日/周末在内部热载荷上的影响)以及观察到的数据(即,基于观测的数据)。因此,我们可以生成最相关的干扰信号,以在基于情况的SMPC方法中使用,以减少控制策略的保守性,同时满足约束。
1 A*STAR 量子创新中心 (Q.Inc)、材料研究与工程研究所 (IMRE)、新加坡科学技术研究局 (A*STAR)、2 Fusionopolis Way, 08-03 Innovis,新加坡 138634,新加坡 2 冲绳科学技术研究生院量子机器部门,冲绳恩纳 904-0495,日本 3 澳大利亚国立大学量子计算与通信技术中心量子科学与技术系,澳大利亚首都领地 2601,澳大利亚 4 澳大利亚国立大学量子科学与技术系,澳大利亚首都领地 2601,澳大利亚 5 新加坡国立大学量子技术中心,3 Science Drive 2,新加坡 117543,新加坡 6 Horizon Quantum Computing,05-22 Alice@Mediapolis,29 Media Circle,新加坡 138565,新加坡 7 高性能计算研究所,科学技术局新加坡科技研究局 (A*STAR) 新加坡 138634 新加坡 8 南洋量子中心,南洋理工大学物理与数学科学学院,21 Nanyang Link,新加坡 639673,新加坡 9 MajuLab,CNRS-UNS-NUS-NTU 国际联合研究单位,UMI 3654,新加坡 117543,新加坡
由于复制越来越多的研究的复制,生物科学中的典型统计实践已被越来越受到质疑,其中许多研究被无效假设测试设计和P值解释的相对难度所困扰。贝叶斯推论代表了一种根本不同的假设检验方法,由于其易于解释和对先前假设的明确声明,因此获得了新的兴趣作为潜在的替代或对传统无效假设检验的补充。贝叶斯模型在数学上比等效频繁的方法更为复杂,这些方法历来将应用程序限制在简化的分析案例中。但是,随着计算能力的指数增加,概率分布采样工具的出现现在可以在任何数据分布下快速而强大的推断。在这里,我们介绍了在大鼠电生理和计算建模数据中使用贝叶斯推断在神经科学研究中使用贝叶斯推断的实用教程。我们首先是对贝叶斯规则和推理的直观讨论,然后使用来自各种神经科学研究的数据制定基于贝叶斯的回归和ANOVA模型。我们展示了贝叶斯推论如何导致对数据的易于解释分析,同时提供开源工具箱来促进贝叶斯工具的使用。
本文在贝叶斯范式中重新表述了赵等人(2021b)的协变量辅助主(CAP)回归。该方法确定了多变量响应数据协方差中与协变量相关的成分。具体而言,该方法估计一组多元响应信号的线性投影,其方差与外部协变量相关。在神经科学中,人们对分析来自大脑不同区域的脑信号时间序列之间的统计依赖性很感兴趣,我们将其称为功能连接(FC)(Lindquist 2008;Fornito 和 Bullmore 2012;Fornito 等人 2013;Monti 等人 2014;Fox 和 Dunson 2015)。功能连接背后的大脑信号是多变量的,在分析功能连接时,每个大脑活动都被视为与其他大脑活动的相对关系(Varoquaux 等人,2010),因为这种统计依赖性与行为特征(协变量)相关。本文开发了一种贝叶斯方法对反应信号进行监督降维,以分析外部协变量与以多变量信号的协方差为特征的功能连接之间的关联。通常,分析大脑功能连接的第一个步骤是定义一组对应于感兴趣的空间区域(ROI)的节点,其中每个节点都与其自己的图像数据时间过程相关联。然后,根据每个节点时间过程之间的统计依赖性(van der Heuvel 和 Hulshoff Pol,2010;Friston,2011),估计网络连接(或节点之间的“边缘”结构)。 FC 网络是使用 Pearson 相关系数( Hutchison 等人,2013 年)以及部分
摘要。糖尿病是一种慢性疾病,在全球范围内被认为是重大健康问题。早期检测和预测糖尿病是实现早期干预和防止并发症的关键步骤。本研究旨在将幼稚的贝叶斯算法应用于预测患有糖尿病的人的可能性。研究中使用的数据集是从美国国家糖尿病和消化和肾脏疾病的研究所获得的。属性,例如性别,年龄,体重指数,葡萄糖水平和其他属性,用作幼稚贝叶斯算法中的自变量,将它们分为两组:患有或没有糖尿病。从研究结果中,已经表明,幼稚的贝叶斯算法可以产生84.6%,82.3%精度和60.8%的召回的预测准确性。
数学模型对于研究细胞内信号网络的结构和行为而言是必不可少的。一种常见的建模方法是开发一个方程式的系统,该方程式使用近似值和简化假设编码已知生物学。结果,相同的信号通路可以由多个模型表示,每个模型都有其基础假设集,这为模型选择打开了挑战,并降低了模型预测中的确定性。在这里,我们使用贝叶斯多模型推断来开发一个框架以提高系统生物学模型的确定性。使用细胞外调节激酶(ERK)路径的模型,我们首先表明多模型推理会增加预测性的确定性,并产生预测因子,这些预测因子对一组可用模型的变化具有良好的变化。然后,我们表明,使用多模型推断做出的预测可以通过减少测量持续时间和减少样本量来引入的数据不确定性。最后,我们使用多模型推理来识别一个新模型,以实验测量的亚细胞位置特异性ERK活性动力学。总而言之,我们的框架突出了多模型推断,作为提高细胞内信号传导活性预测确定性的纪律方法。
如今,机器人已部署在许多不同的行业中,例如,作为自动制造系统的一部分[1]。 有很多原因,例如它们的准确性,重复性和(重复)任务执行的速度[2]。 但是,工业机器人的部署增加导致制造工艺消耗的电能增加。 能源成本的上升以及成为能源中立的愿望增加了减少能源消耗的需求[3]。 此外,行业必须适应能源分配和供应的波动,以考虑灵活的能源价格或能源供应限制[4]。 因此,实现最大的能源效率,同时可以灵活地调整能源使用,例如,通过更改生产速度,这是最重要的感兴趣[5]。 存在着各种旨在针对机器人制造系统能源效率的方法。 首先,一个人可以针对制造过程的节能设计,例如,在不使用机器人时避免进行预期任务的超大机器人或减少空闲时间[6]。 其次,人们可以专注于软件端,例如路径优化,计划实现路径的能量最佳轨迹,或在机器人闲置时使用使用的节能备用模式[6]。 我们将重点放在第二类方法上,考虑到给定的机器人,特定任务以及预定义轮廓成功完成任务完成的指定途径。 仍然要计算一种能节能的轨迹,该轨迹实现了利用可用自由度的路径。如今,机器人已部署在许多不同的行业中,例如,作为自动制造系统的一部分[1]。有很多原因,例如它们的准确性,重复性和(重复)任务执行的速度[2]。但是,工业机器人的部署增加导致制造工艺消耗的电能增加。能源成本的上升以及成为能源中立的愿望增加了减少能源消耗的需求[3]。此外,行业必须适应能源分配和供应的波动,以考虑灵活的能源价格或能源供应限制[4]。因此,实现最大的能源效率,同时可以灵活地调整能源使用,例如,通过更改生产速度,这是最重要的感兴趣[5]。存在着各种旨在针对机器人制造系统能源效率的方法。首先,一个人可以针对制造过程的节能设计,例如,在不使用机器人时避免进行预期任务的超大机器人或减少空闲时间[6]。其次,人们可以专注于软件端,例如路径优化,计划实现路径的能量最佳轨迹,或在机器人闲置时使用使用的节能备用模式[6]。我们将重点放在第二类方法上,考虑到给定的机器人,特定任务以及预定义轮廓成功完成任务完成的指定途径。仍然要计算一种能节能的轨迹,该轨迹实现了利用可用自由度的路径。例如,避免高速度和加速度可减少能耗。但是,这导致长