摘要:组织培养物,尤其是脑器官的分析,进行了高度的协调,测量和监测。我们已经开发了一个自动化的研究平台,使独立设备能够实现以反馈驱动的细胞培养研究实现协作目标。由物联网(IoT)体系结构统一,我们的方法可以在各种感应和驱动设备之间进行连续的,交流的互动,从而实现了对体外生物学实验的准时控制。该框架整合了微流体,电生理学和成像装置,以维持脑皮质器官并监测其神经元活性。类器官是用定制的3D打印室进行培养的,该腔室附着在商业微电极阵列上,用于电生理监测。使用可编程的微流体泵实现周期性喂养。我们开发了抽吸培养基的计算机视觉量估计,达到了高精度,并使用了反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过比较手动和自动化方案的7天研究对系统进行了为期7天的研究。自动化的实验样品在整个实验过程中保持了强大的神经活性,与对照样品相当。自动化系统启用了每小时的电生理记录,该记录揭示了在每天一次的录音中未观察到神经元发射率的巨大时间变化。
Multibeam Echosounder(MBE)已成为海底映射的主要工具。技术进步和改进的数据处理方法提高了测深测量的准确性和空间分辨率,并且还导致了MBES反向散射数据的使用越来越多,用于海底地质和底栖生物栖息地映射应用。MBES BackScatter现在经常用于表征海洋陆战队和动物区系的栖息地,有助于开发有效的海洋空间规划和管理策略,并且通常可以更好地对海床进行分类。最近,进一步的技术进步使得在多声纳操作频率(多频反向散射)下对反向散射的获取和分析具有后续的潜在利益,可改善海底表征和分类。本评论重点介绍了与多频的海流声学反向散射相关的当前可用的同行评审论文,从而对不同底栖环境的贡献进行了全面的摘要,为相关应用程序和概述挑战和研究指示奠定了基础。
普通的英语摘要背景和研究目的是淋巴瘤是癌症,该癌症始于免疫系统的感染细胞,称为淋巴细胞。每年在英国被诊断出13,000例非霍奇金淋巴瘤。弥漫性大B细胞淋巴瘤(DLBCL)是最常见的,每年约为5,000例新病例。利妥昔单抗和切碎化疗是标准的一线治疗方法,但在三分之一的患者中,它行不通。这些患者中的大多数将死于疾病,因为用利妥昔单抗治疗后,救助治疗的成功受到限制。其他并发症很少的患者能够在二线(+)治疗后能够进行高剂量治疗(干细胞移植),但仅当他们完全缓解时。越来越需要寻找更好的二线治疗方法,该治疗允许有资格接受高剂量治疗的患者接受它。
客观的职业人体工程学因素(OEF)包括物理效率,苛刻的姿势,重复性工作,手臂振动,跪下或蹲下,上升和攀爬,这是低背痛的危险因素(LBP)。这项研究旨在检查患病率,残障人数(YLD),医疗保健成本以及LBP的生产率损失,归因于年龄,性别,性别,世界卫生组织,世界卫生组织地区和国家/地区。在这项横断面研究中,患病率和YLD的方法是从全球疾病负担,伤害和风险因素研究中提取的2019年。就业统计是从国际劳工组织网站获得的。使用可归因于人口的192个国家和地区估计健康和经济影响。在全球范围内,OEF负责2019年的工作年龄人口(15-84岁)的1.261亿普遍的LBP病例和1,510万YLD案件,西太平洋地区遭受最大的苦难。OEF-Attrib-utable LBP导致全球2161亿美元的经济损失。在医疗保健费用上支付了470亿美元,公共部门担任较大的贡献者(59.2%)。高收入国家>全球经济负担的70%,而中等收入国家的全球YLD> 70%。通常,在女性中发现了更普遍的病例和医疗费用,而男性中有更多的YLD,生产力损失和总成本。在全球范围内得出结论,OEF-Atributable LBP对健康和经济体系带来了沉重的负担。与教育,积极监测,基于证据的医疗实践,替代性成本有效的解决方案以及优先考虑健康政策的优先级。
最近已经显示,急性应力影响大型大脑网络之间的神经资源分配,尤其是执行控制网络和显着网络之间的平衡。对这种动态资源重新分配过程的适应性被认为在与压力相关的PSY-CHOPALOGY中起主要作用,这表明应力弹性可以通过在这两个网络之间自适应地重新分配神经资源的保留能力来确定。积极训练这种能力可能是增加患有与压力相关的症状学风险的个体的弹性的潜在有前途的方法。使用实时功能磁共振成像,当前的研究研究了个人是否可以学会自我调节与压力相关的大规模网络平衡。参与者参与了双向和隐式实时fMRI神经反馈范式,其中间歇性地向他们提供了视觉表示显着性和执行控制网络平均激活和执行控制网络之间的差异信号,并试图自我调节该信号。Our results show that, given feedback about their performance over three training sessions, participants were able to (1) learn strategies to differentially control the balance between SN and ECN activation on demand, as well as (2) successfully transfer this newly learned skill to a situation where they (a) did not receive any feedback anymore, and (b) were exposed to an acute stressor in form of the prospect of a mild electric stimulation.当前的研究构成了基于与压力相关的大规模网络平衡的神经反馈培训的第一大成功证明 - 一种新颖的方法,一种新的方法有可能培训对现实生活中压力源的中心反应的控制,并可能为未来的临床干预措施奠定基础,以促进越来越多的弹性。
准确的分子特性预测对于药物发现和计算化学至关重要,促进了有希望的化合物并加速治疗性发育的鉴定。传统的机器学习以高维数据和手动特征工程的速度失败,而现有的深度学习方法可能不会捕获复杂的分子结构,而留下了研究差距。我们引入了深CBN,这是一个新型框架,旨在通过直接从原始数据中捕获复杂的分子表示来增强分子性质预测,从而提高了准确性和效率。我们的方法论结合了卷积神经网络(CNN)和biforter注意机制,同时采用了前向算法和反向传播。该模型分为三个阶段:(1)功能学习,使用CNN从微笑字符串中提取本地特征; (2)注意力完善,通过向前前锋算法增强的Biforter模块捕获全球环境; (3)预测子网调整,通过反向传播进行微调。对基准数据集的评估 - 包括TOX21,BBBP,SIDE,Clintox,Clintox,Bace,HIV和MUV,表明深-CBN达到了近乎完美的ROC-AUC分数,显着超过了最好的State-Art-Art方法。这些发现证明了其在捕获复杂分子模式的有效性,提供了一种强大的工具来加速药物发现过程。
这项工作在头部(VIH)框架中提出了一种新颖的声音,该框架集成了大型语言模型(LLM)和语义理解的力量,以增强复杂环境中的机器人导航和互动。我们的系统从战略上结合了GPT和Gemini Power LLM作为加强学习(RL)循环中的演员和评论家组成部分,以进行连续学习和适应。vih采用了由Azure AI搜索提供动力的复杂语义搜索机制,使用户可以通过自然语言查询与系统进行交互。为了确保安全并解决潜在的LLM限制,该系统将增强学习与人类反馈(RLHF)组件结合在一起,仅在必要时才触发。这种混合方法可带来令人印象深刻的结果,达到超过94.54%的成功率,超过了既定的基准。最重要的是,VIH框架提供了模块化可扩展的体系结构。通过简单地修改环境,该系统展示了适应各种应用域的潜力。这项研究为认知机器人技术领域提供了重大进步,为能够在现实世界情景下能够复杂的推理和决策制定的智能自治系统铺平了道路,这使我们更接近实现人工通用情报。
精神疾病和症状与疼痛感知和29敏感性的差异有关。这些差异可能在治疗脊柱退行性30疾病(SDD)和慢性低下痛疼痛(CLBP)方面具有重要意义。利用来自英国生物银行(UKB)31的数据和我们所有人的研究计划(AOU),我们研究了与精神病32疾病联系起来的影响(酒精使用障碍,焦虑症,注意力缺陷多动障碍,躁郁症,躁郁症,33大麻大麻症,33大麻症障碍,抑郁症,抑郁症,抑郁症,抑郁症,抑郁症,抑郁症,后压力障碍,术后疾病障碍,以及34 schizophren和34 schizophren和34 schiz s s sd sdd and clb and clb and clb and cld and cld and cld。我们应用了多基因回归模型,多基因风险35评分(PRS)和一个样本的孟德尔随机分组(MR)来三角剖分观察到的关联的效果36。我们还进行了基因本体论和药物替代的37个分析,以剖析精神疾病,SDD和CLBP之间共享的生物学。比较38个仅受SDD影响的人(UKB n = 37,745,AOU n = 3,477),仅受CLBP 39影响的人(UKB n = 15,496,AOU N = 23,325),受到了这两种情况的影响(UKB n = 11,463,AOU 40 N = 13,451) n = 117,162),观察性和遗传学41个知情分析强调,三个病例组的最强作用是酒精使用障碍,焦虑,抑郁和创伤后应激障碍的42个。43此外,精神分裂症及其PR似乎与CLBP,44 SDD及其合并症有反比关系。单样本MR强调了将45种疾病内化的潜在直接作用对SDD尤其强大的结果。52我们的药物-46重新利用分析确定组蛋白脱乙酰基酶抑制剂是靶向分子途径47在精神疾病,SDD和CLBP中共享的47。总而言之,这些发现支持48精神疾病,SDD和CLBP之间的合并症是由于直接49效应的贡献以及将这些健康结果联系起来的共享生物学的贡献。这些多效机制50和社会文化因素在塑造整个心理病理学谱系中观察到的SDD-CLBP合并症51模式中起着关键作用。
组合脑电图和fMRI允许整合精细的空间和准确的时间分辨率,但如果实时执行以实现神经反馈(NF)循环,则会引起许多挑战。在这里,我们描述了在运动成像NF任务中同时获得的脑电图和fMRI的多模式数据集,并补充了MRI结构数据。这项研究涉及30名健康志愿者接受五次培训。我们在以前的工作中展示了同时EEG-FMRI NF的潜力和优点。在这里,我们说明了可以从该数据集中提取的信息的类型并显示其潜在用途。这代表了NF的EEG和fMRI的第一个同时记录之一,在这里我们提出了第一个开放访问BI-MODAL模式NF数据集,该数据集整合了EEG和FMRI。我们认为,这将是(1)多模式数据集成的进步和测试方法,(2)提高所提供的NF质量,(3)改善在MRI下获得的EEG的方法论,并(4)使用多模式信息研究了运动象征的神经标志物。
表2。有关反馈预测和客观评估的文献摘要。方法列是指算法:基于规则的(RB),条件随机字段(CRF),隐藏的马尔可夫模型(HMM),深神经网络(DNN),长期短期记忆,歧视专家的潜在混合物(LSTM)。反馈列是指研究的反馈,第一字母表示所预测的类型:仅通用(g)或特定(g/s);第二个字母指的是方式:口头(V)和/或手势(G)。特征列是指特征的类型:韵律(P),形态 - 句法(M),手势/视觉(G),自动回归(A)。误差范围(MOE)列指示用于评估地面真相开始反馈的窗口( - 表示丢失的信息)。分数列包含指标和相关得分:f-Score(f),Precision(p),召回(r)。