蓝细菌是最早在生态系统功能中起着至关重要的作用的生态系统的生物之一,包括C和N固定,营养循环和与高等植物和其他在全球规模上影响过程的生物体的养分循环和有益的相互作用。蓝细菌由于其动力和适应性而在工业,恢复和农业实践中也具有潜力。然而,蓝细菌生理和微生物学的最新发展表明,作为生态系统工程师的蓝细菌的基本知识存在差距。在其功能以及土壤特征,与其他生物(例如植物(例如植物)的相互作用)以及人类利益的代谢能力的相互作用中,需要进行更深入的研究。我们欢迎提交原始研究文章,建模,沟通,全面评论,评论或观点。感兴趣的主题包括但不限于对陆地蓝细菌生理学,生态学和基因组学以及它们在恢复,农业和工业中的使用。还鼓励对极端或研究的环境进行多样性研究。
由于它们具有出色的机械品质,疗法稳定性以及充当碳二氧化碳,氧气和芳香化学物质的有效障碍的能力,因此基于合成石化的聚合物的需求更大。,基于石化材料作为包装材料的合成聚合物选择的主要因素是其广泛的利用可用性和相对较低的成本。合成基于石化的聚合物的抽签是,尽管它们在包装材料中广泛使用,但它们的生物降解性差,使它们成为使用后的重要垃圾来源。大量极其有害的排放,堆肥问题以及二氧化碳周期的变化是这种环境威胁的主要原因。6此外,由于社会事务的局限性和技术困难,在许多国家中很少回收丢弃的包装塑料,从而导致大量使用的用过的塑料材料要么倾倒在垃圾填埋场中,要么添加到周围的环境周围的垃圾中,最终使环境平衡了环境平衡。因此,这种现象吸引了许多研究人员的兴趣,这些研究人员致力于创建活跃,可持续的包装材料。因此,除了保质期,成本和保护外,包装设计还应考虑用户友好和环境可持续性。因此,检查由自然降解聚合物制成的包装材料引起了更多的关注。这是向更绿色,更可持续的世界迈进的基本运动。在可生物降解的生物材料中,多羟基烷烃(PHAS)吸引了特定的注意。PHA是热塑性,生物相容性和羟基衍生脂肪的可生物渐变微生物聚合物
在整个生命之树中,基因长度各不相同,但大多数的长度不超过几千个碱基对。最大的蛋白质经常报告是约40,000个AA真核生物滴定。甚至更大的蛋白质可能发生在快速扩展的元基因组衍生序列中,但是它们的存在可能会因组装碎片而掩盖。在这里,我们利用基因组策展来完成元基因组衍生的序列,该序列编码了高达85,804 AA的预测蛋白质。总体而言,这些发现阐明了与巨型蛋白质有关的巨大知识差距。尽管预测的蛋白质> 30,000 aa的蛋白质发生在细菌的门中,例如坚硬和静脉细菌,但它们在CA中最常见。全硝基,超小细菌,采用掠夺性生活方式。所有全长巨型基因编码众多跨膜区域,大多数编码不同的SECA死解旋酶结构域。需要在蛋白质子区域的计算机结构预测中识别未经注释的蛋白质段中的结构域,并揭示了与附着和碳水化合物降解有关的推定域。在新的完整和接近完全完整的全硝基化基因组中,许多巨型基因都与与II型分泌系统同源的基因以及碳水化合物进口系统非常接近。这与域含量结合使用,建议
目前的研究团队通过实验测试了长期以来的假设,即细菌的遗传多样性限制了病毒物种的多样性。这导致人们期望一种噬菌体类型将胜过所有其他噬菌体成为孤独的幸存者。然而,就像多细胞生物在其微生物组中拥有各种细菌物种一样,新的结果表明,单个细菌菌株本身可以拥有多样化的噬菌体群体。
摘要:shot弹枪蛋白质组学已被证明是识别病原体和表征其产生的抗菌耐药基因的有吸引力的替代方法。由于其性能,预计通过串联质谱法对微生物的蛋白质打字将成为现代医疗保健中必不可少的工具。通过培养物学从环境中分离出来的蛋白质型微生物也是开发新生物技术应用的基石。系统性培训是一种新策略,可估计样品中存在的生物体之间的系统发育距离并计算其共同肽的比率,从而改善其对生物量的贡献的定量。在这里,我们确定了基于记录几种细菌的MS/MS数据的串联质谱蛋白观察的限制。使用我们的实验设置的沙门氏菌邦戈里的检测极限为4×10 4菌落形成单元,来自1 ml的样品体积。这种检测极限与每个细胞的蛋白质量直接相关,因此取决于微生物的形状和大小。我们已经证明,细菌通过系统肽学对细菌的鉴定独立于其生长阶段,并且在存在相同比例的其他细菌的情况下,该方法的检测极限不会降解。
乳酸细菌(LAB)因其在食品保存中的作用及其产生细菌素的潜力而被广泛认可,天然抗菌肽有效地针对各种粮食源性病原体。本研究的重点是从摩洛哥南部和北部收集的生奶样品中产生细菌素的实验室菌株的分离和表征。表型和基因型方法用于鉴定分离的菌株,并针对包括大肠杆菌和沙门氏菌属的普通食源性病原体评估了它们的抗菌活性。结果表明,有几种实验室菌株具有明显的细菌素产生和对靶病原体的强烈抑制作用。这些发现突出了这些菌株在食品行业中的潜在应用,尤其是为了提高发酵食品的安全性和保质期。这项研究为将来研究实验室作为天然食品防腐剂的生物技术剥削提供了基础。
e.karana@tudelft.nl摘要将微生物整合到人工制品中是HCI设计师感兴趣的越来越多的领域。但是,了解复杂的微生物行为所需的时间,资源和知识限制了设计师创造性地探索生命文物中的时间表达,即生活美学。桥接生物设计和计算机图形,我们开发了FlavoMetrics,这是一种交互式数字工具,该工具支持生物签名者探索黄霉菌的生活美学。此开源工具使设计人员能够实际上接种细菌并操纵刺激,以在数字环境中调节黄素的生命色。六名生物设计师评估了该工具,并反映了其对实践的影响,例如(1)了解2D以上的微生物的时空品质,(2)生物设计教育,以及(3)生命工厂的原型化经验。使用类黄素测量法,我们希望激发新颖的HCI工具,用于可访问,时间和资源效率的生物设计,以及更好地与不同的微生物时间范围内与生存人工制品生活中的差异。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月27日。 https://doi.org/10.1101/2025.02.27.639550 doi:Biorxiv Preprint
发现具有最小毒性或对正常细胞副作用的新型生物相容性和可生物降解的聚合物制剂是微生物感染和癌症治疗的主要并发症。已经发现了用于聚(氧化乙烷)(PEO)或聚(乙二醇)(PEG)聚合物的各种化学,生物和药物功能。增强抗菌和抗癌活性,结合了金属或金属氧化物纳米颗粒(NP),例如银(Ag),氧化铜(CUO)和氧化锌(ZnO)NPS,在该半晶体和线性聚合物中可能是有效策略。更重要的是,PEO可以形成可以直接应用于身体部位的水凝胶,例如皮肤或粘膜进行局部治疗。PEO通过PEO增加口服吸收和抗癌活性来装饰抗癌药物的纳米载体。PEO聚合物对抗病毒药物作为有效递送系统的各种微型和纳米形式的各种微观成分表现出令人鼓舞的结果。根据最近的进展,讨论了这一微型综述,抗菌,抗病毒和抗肿瘤作为PEO及其衍生物的三种主要治疗应用。
