上下文。对种马精液的微生物组成知之甚少。目标。描述在健康微型小马种马中检测到的微生物群。方法。精液标本是在一个时间点使用密苏里人的人工阴道收集的。在这些标本上进行了16S rRNA基因的基因组DNA测序 PACBIO(PACBIO(PACICICIENCES),随后进行了下一代微生物组生物信息组平台qiime2用于处理快速Q纤维并分析amplicon数据。 数据分为属,家庭,阶级,顺序和门。 关键结果。 Firmicutes和杀菌植物占主导地位(76%),其次是proteeobacteria(15%)。 杀菌剂,梭菌和心杆菌占据了微生物等级的占主导地位(86%)。 类主要由细菌,梭状芽胞杆菌和γ-杆菌(87%)组成,而家族主要由卟啉单核,family_xi和心杆菌科(62%)组成。 在属的水平上,有80%的丰度由七个属,即卟啉单胞菌,suttonella,peptoniphilus,peptoniphilus,oftidiosipila,ezakiella,petrimonas和一个不知名的分类单元组成。 结论。 发现表明特定的微生物群可能是健康微型小马种马的特征,并且观察到一些个体间的变化。 含义。 本研究可以告知涉及肥沃和不育受试者的较大的马研究,并可以探索精液微生物组与男性生育能力的关系。PACBIO(PACBIO(PACICICIENCES),随后进行了下一代微生物组生物信息组平台qiime2用于处理快速Q纤维并分析amplicon数据。数据分为属,家庭,阶级,顺序和门。关键结果。Firmicutes和杀菌植物占主导地位(76%),其次是proteeobacteria(15%)。杀菌剂,梭菌和心杆菌占据了微生物等级的占主导地位(86%)。类主要由细菌,梭状芽胞杆菌和γ-杆菌(87%)组成,而家族主要由卟啉单核,family_xi和心杆菌科(62%)组成。在属的水平上,有80%的丰度由七个属,即卟啉单胞菌,suttonella,peptoniphilus,peptoniphilus,oftidiosipila,ezakiella,petrimonas和一个不知名的分类单元组成。结论。发现表明特定的微生物群可能是健康微型小马种马的特征,并且观察到一些个体间的变化。含义。本研究可以告知涉及肥沃和不育受试者的较大的马研究,并可以探索精液微生物组与男性生育能力的关系。
结果:结果表明,瘤胃总挥发性脂肪酸(VFAS),乙酸,丁酸酯,总枝链VFA,ISO丁酸和ISO-butrate在T-sheep中比H-Sheep高。瘤胃细菌的α多样性不受饮食能量的影响,但显示出绵羊品种的区别。具体来说,T-sheep瘤胃细菌的α多样性比H-sheep更高。瘤胃细菌的β多样性不受饮食能量或绵羊品种的影响,表明不同饮食和绵羊品种之间类似的瘤胃细菌群落。瘤状菌和坚硬的门在瘤胃中占主导地位,在T肩中观察到的相对丰度比H-sheep高。瘤胃中两个最丰富的属是Prevotella 1和Rikenellaceae RC9肠组。prevotella 1是瘤胃中主要的细菌属,而rikenellaceae rc9肠组则占主导地位在T-sheep的瘤胃中。微生物共发生网络分析表明,瘤胃发酵特征的变化是由于模块丰度的差异而导致的,并且在T-sheep的象征中观察到的VFA产生模块的丰度更高。微生物功能预测分析表明,饮食能量很少改变瘤胃细菌的功能组成。然而,绵羊品种之间瘤胃细菌的功能存在差异,T-sheep更加重视与能量代谢相关的功能,而H-sheep对蛋白质代谢相关的功能有更大的重视。
与珊瑚宿主相关的摘要细菌是多种多样且丰富的,最近的研究表明,这些共生体参与宿主的弹性对人为应激。尽管具有推定的重要性,但致力于培养珊瑚相关的细菌的工作很少受到关注。结合了已发表和未发表的数据,在这里我们报告了从源自热带,温带和冷水栖息地的珊瑚中分离出的可培养细菌的多样性和功能的全面概述。我们的MetaSurvey考虑了从52项研究中总共3,055个分离株。有1,045个具有全长16S rRNA基因序列,跨越了138个术语,并在proteeobacteria,firmicutes,firmicutes,chitoidetetes和pactinobacteria peryla中描述了138个。我们使用74种菌株的可用基因组和菌株中有益细菌 - 核共生的潜在特征进行了比较基因组分析。我们的分析揭示了。400个生物合成基因簇是抗氧化剂,抗菌,细胞毒性和其他次级代谢物的生物合成的基础。此外,我们发现了可能参与宿主结肠和宿主 - 西姆比恩识别,抗病毒防御机制和/或综合代谢相互作用的基因组特征(以前尚未用于珊瑚 - 杆菌共生剂),我们建议将其作为用于筛选珊瑚雌性筛查的新靶标。我们的结果强调了细菌培养物在阐明珊瑚霍洛皮特功能的重要性,并指导益生菌候选物的选择
迅速增加的人口,加上气候变化以及对合成肥料过度依赖的数十年,导致了两个紧迫的全球挑战:粮食不安全和土地退化。因此,至关重要的是,实践可以使土壤和植物健康以及可持续性更加积极地追求至关重要。可持续性和土壤生育能力包括诸如改善贫困和干旱土壤中植物生产力,保持土壤健康的生产力,并最大程度地减少对贫困土壤管理带来的生态系统的有害影响,包括农业化学品和其他污染物的径流。促进细菌(PGPB)的植物生长可以通过多种方式改善粮食生产:通过促进宏观和微量营养素的资源获取(尤其是N和P),调节植物激素水平,拮抗致病因素并维持土壤生育能力。PGPB包括属于多个门的细菌的不同功能和分类群,包括蛋白质细菌,富公司,细菌,细菌和静脉细菌等。本综述总结了这些有益的土壤细菌用来促进植物健康的机制和方法,并询问它们是否可以进一步发展为有效的,潜在的商业植物刺激剂,这些植物刺激剂实质上降低或替换了涉及食品生产和生态系统稳定性的各种有害实践。我们的目标是描述有益植物 - 微生物相互作用涉及的各种机制,以及它们如何帮助我们实现可持续性。
子宫内膜异位症是由子宫内子宫内膜样组织的定义,是一种慢性雌激素依赖性疾病,其炎症性质标志着。在生殖年中影响了大约10%的女性,子宫内膜异位症会严重影响生活的质量,从严重的痛经到慢性骨盆疼痛,尽管有些人仍然无症状,但由于其高度异质[1]。子宫内膜异位症的病因是多因素的,其理论包括逆行月经,肾上腺失衡,免疫改变,遗传和表观遗传因素,甚至是干细胞的不规则性,可能在其发作和进展中起作用[2]。子宫内膜异位症的发病机理与免疫学变化无关。但是,这种关系的细节尚未完全理解。在动物模型中的研究表明,子宫内膜异位症可以通过增加炎症介质的产生来驱动炎症,这可能是由于向炎症免疫和粘膜微生物谱转移而引起的[3]。“细菌污染假说”表明细菌内毒素在子宫内膜异位症的发病机理中的作用,研究表明,子宫内膜异位症患者的月经血液和腹膜液中大肠杆菌污染显着[4]。值得注意的是,子宫内膜异位患者子宫内膜的梭杆菌的存在明显更高,这表明细菌感染可能是一个促成因素[5]。一项国家队列研究表明,较低的生殖道感染可能是子宫内膜异位症的独立危险因素[6]。女性阴道微生态学是一个由阴道微生物群(VMB),宿主内分泌系统,阴道解剖结构和局部免疫系统组成的生态系统。VMB是指阴道中常见的微生物。Microbial populations isolated from the vagina include Lactobacillus , Gardnerella vaginalis , Prevotella bivia , Atopo- bium spp ., Mobiluncus , Bacteroidetes , Bifidobacterium spp ., Escherichia coli , Candida albicans , Trichomonas vaginalis , Actinobacillus spp ., and Sheathed Anaerobic Coccobacillus ,以及其他稀有细菌和非细菌病原体。VMB对与泌尿生殖道和性传播疾病的传染病相关的病原体具有抵抗力。隐型微生物群是一个重要的障碍,可保护宿主免受各种细菌,真菌的侵害
肠道分子对于人体来说是必不可少的。据估计,我们体内的微生物共同占人类细胞数量的十倍(Qin等,2010)。最近的证据强烈表明,这些微生物的功能几乎像额外的器官,积极参与塑造和维持我们的生理学(Qi等,2021)。肠道微生物群在调节激素水平,对宿主激素的反应甚至产生其激素方面起关键作用(Sudo,2014年)。因此,它被认为是完全闪烁的内分泌器官,其作用范围延伸至遥远的器官和途径(Qi等,2021)。微生物群和激素之间的复杂关系对健康,行为,代谢,免疫和繁殖的各个方面具有深远的影响(Neuman等,2015)。健康的肠道微生物群由6个门组成,包括富公司,细菌植物,肌动杆菌,proteeobacteria,fusobacteria和verrucomicrobia(Crudele等,2023; Hamjane et al。,2024)。两个门的富公司和细菌剂占肠道菌群的90%(Hamjane等,2024)。菌群组成的变化会显着影响健康。这些变化可以在原因或后果的背景下进行评估。然而,不可否认的是,肠道菌群与我们身体的系统协同作用,以深刻影响健康。微生物群和激素之间的相互作用是双向的。在William的评论中所证明的是,激素具有直接影响菌群多样性和组成的能力,而相反,微生物群可以调节激素的产生并介导激素功能(Williams等,2020)。肠道菌群的组成因性激素,下丘脑 - 垂体 - 肾上腺(HPA)轴和胰岛素的失调,喂养行为和肥胖(Yoon and Kim,2021; Farzi et al。,2018; Kelly et al。,2018; Kelly et al。,2015; rusch et;肠道菌群通过与胰岛素,生长素素和GLP-1等激素相互作用,在调节喂养行为和代谢中起关键作用(Williams等,2020)。研究肠道菌群与肥胖之间关系的研究解释了肠道微生物群可以改变宿主代谢以及不疾病的肠道肠菌群在肥胖发展中的作用(Qi等,2021; Angelakis等,2012; Everard et el。,Everard等,2013; Everard等,2013)。肠道菌群产生的数十种代谢产物会影响能量调节和胰岛素敏感性(Qi等,2021;Wahlström等,2016)。代谢物,例如短链脂肪酸(SCFA)和胆汁酸在代谢综合征的中心病理中起重要作用,例如胰岛素抵抗;这些代谢物是影响能量平衡和胰岛素敏感性的肠道菌群的产物(Wahlström等,2016; Den Besten等,2015)。此外,抗糖尿病药物通过促进负责SCFA产生的微生物群生长,从而对丁酸酯和丙酸酯的水平产生积极影响。了解肠道细菌代谢物在内分泌疾病发展中的各种影响对于发现针对代谢疾病的新靶标和新药的发展至关重要。这些微生物群驱动的效应的潜力是深刻的,需要进一步研究其基础。
方法论/主要发现:我们根据粪便样品的全元素shot弹枪测序对185名中国成年人的肠道菌群进行了分析。我们的研究重点是评估三个级别的性别,年龄和BMI对肠道微生物群的影响:多样性,基因/系统发育组成和功能组成。我们的发现表明,与肠型相比,这些表型对构成肠道微生物组的影响很小,它们在样本内或样本之间的多样性内或样本间多样性内无显着相关性。我们确定了大量与表型相关的基因和宏基因组链接组(MLG),表明肠道微环形组成的变化。特别是,在老年人和BMI较高的人群中,我们观察到有益的公司微生物,例如Eubacterium,Roseburia,Roseburia,Faecalibacterium和Ruminococcus spp。随着年龄的增长而增加。此外,Blautia和Dorea spp。随着BMI的增加而增加,与先前的研究保持一致。令人惊讶的是,年龄较大或超重的个体表现出缺乏细菌植物,这是人类肠道菌群中的主要门,包括机会性病原体,而某些众所周知的益生菌的某些物种则富集在这些组中,暗示了这些细菌的复杂相互作用。关于性别,雌性中的几种来自细菌,副细胞杆菌,梭状芽胞杆菌和阿克米西的MLG富含雌性。功能分析显示了许多与表型相关的KEGG直系同源物(KOS)。
抽象的慢性耳鸣是一种中枢神经系统疾病。当前,肠道菌群对耳鸣的影响仍未探索。为了探索肠道菌群与耳鸣之间的联系,我们在70名耳鸣和30名健康志愿者的患者组中进行了16S rRNA测序,对粪便菌群和血清代谢组分分析进行了16s rRNA测序。我们使用加权基因共表达网络方法来分析肠道菌群与血清代谢产物之间的关系。随机森林技术被用来选择代谢物和肠道分类单元来构建预测模型。耳鸣组中明显的肠道营养不良,其特征是细菌多样性降低,富公司/细菌的比率增加,并且包括气或细菌在内的一些机会性细菌富含。相比之下,一些有益的肠道益生菌减少了,包括乳杆菌和乳杆菌科。在血清MIC分析中,耳鸣患者和这些差异代谢产物的血清代谢障碍富含神经炎症,神经递质活性和突触功能的途径。预测模型在测试集中表现出出色的诊断性能,达到0.94(95%CI:0.85-0.98)和0.96(95%CI:0.86-0.99)。我们的研究表明,肠道微生物群的变化可能会影响耳鸣的发生的出身和慢性,并通过血清代谢产物的变化发挥调节作用。总体而言,这项研究提供了对肠道微生物群和血清代谢产物在耳鸣的发病机理中潜在作用的新看法,并提出了“肠道 - 脑耳 - 耳朵”的概念,作为耳鸣的病理机制,具有明显的临床诊断含义和治疗潜力。
摘要:体育活动与肠道菌群组成之间关系的证据正在稳步增加。该研究的目的是比较一组精英男性足球运动员的肠道菌群组成,其中一组身体活动水平不同。对91名健康的年轻男性进行了横断面研究:17名精英足球运动员(23.7±4.2岁,BMI,BMI 23.2±1.2 kg/m 2); 14具有高水平的体育锻炼(24.5±5.6岁,BMI 22.7±0.8 kg/m 2); 23体育训练水平中等(29.3±3.9岁,BMI 22.5±0.8 kg/m 2);和37名没有运动习惯的健康男性(28.1±5.9岁,BMI 22.4±1.0 kg/m 2)。相对微生物群的组成。使用量子荧光计评估提取的DNA的质量和数量。使用单向方差分析分析了受试者人群之间的差异,并采用了Bonferroni的事后测试来识别局部效应。精英足球运动员和体育锻炼水平较高的受试者显示,分析的9个微生物群体的患病率明显高于中度体育锻炼或久坐的受试者。在不同的研究人群中,企业与杆菌比的比率没有发现差异。本研究首次报告了精英足球运动员的肠道菌群参数。此外,它为不同水平的体育活动对肠道菌群组成的影响带来了新的见解。
缩写:Alt,丙氨酸氨基转移酶;猿,苹果多酚提取物; apoe /,载脂蛋白E; AST,天冬氨酸氨基转移酶; BMI,体重指数; BW,体重; CD,克罗恩病; CRC,结直肠癌; CRP,C反应蛋白; CTR,控制; DGGE,变性梯度凝胶电泳; DP,聚合程度; DSS,硫酸葡萄糖钠; EGCG,epigallocatechin Gallate; EGCG3-ME,Epigallocatechin 3- O-(3- O-甲基)透足; f,分数; f/b,企业/杀菌剂; GMCSF,粒细胞巨噬细胞群刺激因子; GRO,生长调节的癌基因; GSPE,葡萄种子原腺苷提取物; GTE,绿茶提取物; HBA1C,血红蛋白A1C; HFD,高脂饮食; HFHSD,高脂高蔗糖折叠; HTS,高通量测序; IBD,炎症性肠病;国际益生菌和益生元科学协会Isapp; LDLR /,LDL受体缺陷; LFD,低脂饮食; LPS,脂多糖; MCD,蛋氨酸 - 胆碱缺乏;大都会,代谢综合征; NAFLD,非酒精性脂肪肝病;纳什,非酒精性脂肪性肝炎; PACS,低聚蛋白酶蛋白; PCR-DGGE,聚合酶链反应构成梯度凝胶电泳; PFE,pyracantha fortuneana果实提取物; PPEP,果皮桃萃取的多酚; SASP,磺胺丙嗪; SCFA,短链脂肪酸; TLR4,像受体4一样收费; TMAO,三甲胺-N-氧化物; TNB,2,4,6-三硝基苯磺酸; TPC,总多酚的含量; UC,溃疡性结肠炎; w/v,重量/体积。