背景:脑电图 (EEG) 是一种关键的非侵入性工具,它可以以毫秒级的精度捕捉脑信号,并能够实时监测个人的精神状态。从这些 EEG 信号中提取适当的生物标志物并将其呈现在神经反馈回路中,为促进神经补偿机制提供了一种独特的途径。这种方法使个人能够熟练地调节他们的大脑活动。近年来,人们已经发现了与衰老相关的神经生物标志物,凸显了神经调节在老年人大脑活动方面的潜力。方法和目标:在基于 EEG 的脑机接口框架内,本研究重点关注了衰老大脑中可能受到干扰的三种神经生物标志物:峰值 Alpha 频率、Gamma 波段同步和 Theta/Beta 比率。主要目标有两个:(1)通过一项严格设计的双盲、安慰剂对照研究,研究主观记忆力不佳的老年人是否可以通过脑电图神经反馈训练学会调节他们的大脑活动;(2)探索这种神经调节可能带来的认知增强。结果:在接受脑电图神经反馈训练的组中,观察到了伽马波段同步生物标志物的显著自我调节,这种调节对许多高级认知功能至关重要,并且已知会随着年龄的增长而下降,在阿尔茨海默病 (AD) 中下降得更厉害。这种效果与接受假反馈的受试者形成鲜明对比。虽然这种神经调节并不直接影响认知能力,如通过训练前和训练后的神经心理学测试所评估的那样,但研究开始时所有受试者的高基线认知表现可能是造成这一结果的原因。结论:这项双盲研究的结果与成功神经调节的关键标准相符,凸显了伽马波段同步在这一过程中的巨大潜力。这一重要成果鼓励进一步探索针对这一特定神经生物标志物的脑电图神经反馈,将其作为一种有希望的干预措施,以对抗通常伴随大脑衰老而出现的认知能力下降,并最终改变 AD 的进展。
亚麻(Linum Usitatissimum L.)是一种工业重要性,其纤维目前用于高价值纺织品应用,复合增援部队以及自然致动器。人类对这种纤维丰富的植物的兴趣可以追溯到几千年,包括古埃及,那里的亚麻在各种quotidian物品中广泛使用。尽管亚麻纤维的最新技术发展继续通过科学研究多样化,但《亚麻的历史使用》也为今天提供了丰富的课程。通过仔细检查古埃及和现代亚麻纤维,本研究旨在进行从纱线到纤维细胞壁尺度的多尺度表征,将结构和多糖含量的差异与亚麻的机械性能和耐用性联系起来。在这里,通过扫描电子显微镜和纳米力学研究来丰富多尺度的生化研究。关键发现是纤维素特征,结晶度指数和古代纤维和现代纤维之间的局部机械性能的相似性。从生物化学上讲,单糖肛门,深紫外和NMR的研究表明,古代纤维表现出较少的果胶,但类似的半纤维素含量,尤其是通过尿酸和半乳糖,表明这些非晶体成分的敏感性。
摘要作为新法国能源过渡法的一部分,Demosthene Research项目正在研究重用旧废弃地雷以在Picardy地区存储热能的可能性。目的是存储一个小型集体单元所需的热量,该单元对应于2,000至8,000 m 3的水量,具体取决于温度(从15°C到70°C)。一个库存显示该地区约3,700个理论上可用的站点。这些主要是干燥的矿山,或者部分被大约1 m的水深淹没。基于此水深和75%的提取比,所需的矿区约为10,000平方米。来自具有足够表面积的四十个地点,只有一个自然淹没,尽管从统计上有许多目前尚不清楚的地点。为了使这个实验地点可再现,决定选择干矿,但有足够的面积以实现人造洪水装置。从理论上讲,这代表Picardy中的一千多个站点。最有趣的是Saint-Maximin的旧石灰石矿,可以建造一个密封的盆地。在安装实验地下热量储能盆地之前,对热力学和热液行为进行了建模。目的是优化将用于监测盆地的各种传感器的位置,并通过热变化预测壁上诱导的未来变形。A 100 m 3盆地用衬里密封,并配有18个传感器,以测量温度,湿度和应变。这些传感器允许监测存储的水,岩壁和周围气氛。此设备现在必须运行六个月,即一个完整的加热冷却周期及其结果将进行分析。
LaAlO 3 /SrTiO 3 和 LaTiO 3 /SrTiO 3 异质结构表现出由电子密度控制的复杂相图。 [1,2] 虽然系统在低密度下处于弱绝缘状态,但当通过静电门控(采用背栅、侧栅或顶栅结构)添加电子时,就会出现超导性[1,3,4](图1)。当载流子密度(n 2D)增加时,超导 T c 升至最大值 c max T ≈ 300 mK,然后随着掺杂的进一步增加而降低。由此产生的圆顶状超导相图类似于在其他超导体家族中观察到的相图,包括高 T c 铜酸盐、Fe 基超导体、重费米子和有机超导体。 [5,6] 在氧化物界面相图中,普遍观察到两个明显的掺杂点:低密度下的量子临界点 (QCP),它将弱绝缘区与超导区分开;最佳掺杂下的最大临界温度点 (c max T),它定义了欠掺杂区与过掺杂区之间的边界。尽管进行了大量研究,但对这两个点的起源尚无共识。在 LaAlO 3 /SrTiO 3 异质结构中,电子
从长途光纤链路到短距离无线网络,数字通信系统越来越依赖于光子集成电路。然而,对更高带宽的追求正在将当前的解决方案推向极限。硅光子平台因其可扩展性和成本效益而备受赞誉,它依赖于诸如硅上 III-V 族元素异质外延[ 3 ]或在 SOI 波导上放置锗鳍片[ 1 ]等解决方案,以实现超高速应用。在所有硅光子技术中,氮化硅 (SiN) 材料平台具有一些独特的优势:它们提供非常低损耗的波导,由于非常高 Q 值的谐振器而具有非常好的滤波器,并且由于没有双光子吸收(与硅相比),因此可以处理非常高的功率。然而在 SiN 上,无法直接生长。一种可能的解决方案是将 III-V 族元素晶圆键合到 SiN 波导上[ 2 ]。在这项工作中,我们提出了一种多功能且可扩展的方法,通过微转印(µTP)单行载流子(UTC)光电二极管在 SiN 上创建波导耦合光电探测器。
本文报告了两项 AlGaN / GaN 高电子迁移率晶体管 (AlGaN / GaN HEMT) 技术(器件“A”和器件“B”)的可靠性研究。对雷达应用的实际工作条件下承受应力的器件进行了故障分析研究。这些器件经过脉冲射频长期老化测试,11000 小时后射频和直流性能下降(漏极电流和射频输出功率下降、夹断偏移、跨导最大值下降、跨导横向平移以及栅极滞后和漏极滞后增加)。热电子效应被认为是钝化层或 GaN 层中观察到的退化和捕获现象的根源。光子发射显微镜 (PEM)、光束诱导电阻变化 (OBIRCH)、电子束诱导电流 (EBIC) 测量与这一假设一致。这三种技术揭示了沿栅极指状物的非均匀响应和不均匀分布,此外,在漏极侧或源极侧的栅极边缘上存在一些局部斑点。对这些斑点进行光谱 PEM 分析可识别出可能与位错或杂质等晶体缺陷有关的原生缺陷。对 AlGaN / GaN HEMT 的两种技术进行的原子探针断层扫描 (APT) 分析支持了这一假设。APT 结果显示存在一些化学杂质,如碳和氧。这些杂质在器件“A”中的浓度相对较高,这可以解释与器件“B”相比,该器件的栅极滞后和漏极滞后水平较高。
条款和条件:1。该职位是暂时的,并且纯粹是合同基础,直到终止项目。所选候选人的服务将按照DST-Serb / Skuast-J指南。2。候选人无权通过吸收或以其他方式要求任何正规职位或任何其他合同参与的合法权利,因为该项目纯粹是时间限制且无规律的。该职位是临时的,并且与该项目共同终止。在项目期间到期时,任职者的服务应自动终止。3。大学/资助机构保留在任何阶段撤回广告帖子的权利,而无需分配任何原因。4。如果当前雇主/他从事雇用,则没有反对和经验证书。5。参加上述面试将不可接受。6。规定的教育资格是最低限度的,而仅拥有同一教育资格并不享有候选人的权利。筛查委员会可能会根据广告考虑资格和经验后,限制候选人的数量。只有简短的候选人将通过邮件/电话告知通过在线/个人模式参加面试。7。&A.H.,Skuast-J,R.S。pura,181102,查mu,J&K; (电子邮件:srahmanskuastj@gmail.com)在05-02-2025上或之前(截至下午5:30)。不应在截止日期后收到的申请。收到申请表的最后日期:符合条件的候选人可以根据附带的成像,详细的简历,最新照片,自我目击的证明/证书/证书/证书和两个裁判的名称发送申请书步入式访谈日期:06-02-2025(上午11:00)在研究局,Chatha,查莎,查张,查找180009,查mu。候选人应带上所有原始的推荐/简历。不会发出单独的暗示进行面试。选定的候选人将通过电子邮件/电话告知。8。详细的广告也可以在大学网站www.skuast.org上获得。
1.A 本指南的目的 本指南是康涅狄格州宽带公平、接入和部署 (BEAD) 计划潜在申请人的综合资源。它提供了了解计划要求的路线图,确保符合其目标,即在未服务和服务不足的社区扩大经济实惠的高速宽带接入。该文件包括有关确定资格的门槛标准的信息、用于评估申请的评分标准、通过指定平台提交申请的说明,以及反映该计划对成本效率、数字公平、技术卓越、可负担性和公平劳动实践等因素的承诺的具体优先事项的详细信息。通过提供透明和结构化的说明,本指南旨在帮助申请人制定满足康涅狄格州宽带需求的竞争性提案。 1.B BEAD 计划的目的和目标
在平面频带(FB)材料中,高温超导性非常规形式的可能性并不能挑战我们对相关系统中物理学的理解。在这里,我们计算了在各个一维FB系统中的正常和异常的单粒子相关函数,并系统地提取特征长度。当Fermi能量位于FB中时,发现相干长度(ξ)是晶格间距的顺序,并且对电子电子相互作用的强度较弱。最近,有人认为,在FB化合物中可以将ξ分解为BCS类型的常规部分(ξBCS),而几何贡献则表征了FB本征态,量子度量()。但是,通过以两种可能的方式计算连贯长度,我们的计算表明ξ̸= p